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Tuning Diffusion and Friction in Microscopic Contacts By Mechanical Excitations
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We demonstrate that lateral vibrations of a substrate can dramatically increase surface diffusivity and
mobility and reduce friction at the nanoscale. Dilatancy is shown to play an essential role in the dynamics
of a nanometer-size tip which interacts with a vibrating surface. We find an abrupt dilatancy transition
from the state with a small tip-surface separation to the state with a large separation as the vibration
frequency increases. Atomic force microscopy experiments are suggested which can test the predicted
effects.
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Because of its practical importance and the relevance to
basic scientific questions, there has been a major increase
in the activity in studies of dynamics in nanoscale confine-
ment during the last decade [1–4]. Substantial progress in
understanding the leading factors that determine the dy-
namics in confining systems has opened new possibilities
to modify and control motion at the nanoscale [5–15]. The
difficulties in realizing an efficient control of motion are
related to the complexity of the task, namely, dealing with
systems with many degrees of freedom under a strict size
confinement, which leaves very limited access to interfere
with the system in order to be able to control.

In this Letter we investigate the effect of lateral vibra-
tions of a substrate on diffusivity, mobility, and friction at
the nanoscale. We demonstrate that manipulations by me-
chanical excitations when applied at the right frequency
and amplitude can dramatically increase surface diffusion
and mobility, and reduce friction. The proposed approach
differs from earlier suggestions of controlling friction via
normal vibrations [8–11,13]. The predicted effects should
be amenable to atomic force microscopy (AFM) tests
using, for instance, shear modulation mode [14,16] or
applying ultrasound to the sample [17,18]. The model
can also be used in studies of contact mechanics of a probe
interacting with oscillating quartz crystal microbalance
surfaces which provide unique information on interfacial
properties under high-frequency shear [19–21].

In order to study the effect of lateral vibrations on
diffusion and friction in the context of AFM, we introduce
a model of a tip interacting with a substrate, which oscil-
lates in the lateral direction. The motion of the tip in the
lateral, and normal, directions is governed by the coupled
Langevin equations:
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Here M and x, and z are the mass, the lateral, and the
normal coordinates of the tip, U�x; z� is the potential
experienced by the tip due to the interaction with the
substrate, b is its periodicity in the lateral direction, and
� characterizes the amplitude of corrugation in the x
direction. The parameters �x and �z are responsible for
the dissipation of the tip kinetic energy due to the motion in
the x and z directions, respectively. These terms account
for the dissipation due to phonons and/or other excitations
[3,15]. Here we take into account the dependence of U and
�x;z on the tip-substrate separation [11]. As an example, we
assume an exponential decrease of U and �x;z with a rate
��1 as z increases. The tip is held at the surface by a
normal load Fz � Kz�z0 � z�t�� applied by a linear spring
of spring constant Kz. In friction experiments the tip is
laterally pulled, Fx � Kx�vt� x�t��, by a spring of spring
constant Kx connected to a stage which moves with a
constant velocity v. The effect of lateral vibrations of the
substrate is included through a time dependence of its
position, x0 � A0 sin�2!t�, where A0 and ! are the am-
plitude and the frequency of the oscillations. The random
forces, fx;z, represent thermal noise satisfying the
fluctuation-dissipation relation, hfi�t�fj�0�i �
2�ikbT��t��i;j, where i; j � x; z.

It is convenient to introduce the dimensionless coordi-
nates and time X � x=b, Z � z=b, � � t!0, where !0 �

�1=b�
�����������������
U0�=M

p
is the frequency of the small oscillations of

the tip in the periodic potential. The dynamical behavior of
the system is determined by the following dimensionless
parameters: A � A0=b, � � !=!0, kBT=U0, �x:z=M!0,
�=b, Kxb2=�42U0��, Kz�2=U0, and ~v � v=�!0b�.

First, we consider the effect of the substrate vibrations
on surface diffusion, which occurs in the absence of the
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lateral driving force, Fx � 0. We start from the case of one-
dimensional motion of the tip, which takes place for a stiff
normal spring, Kz 
 U0�1� ��=�2. Then the distance
between the tip and the surface is constant, z � z0.
Equation (1) shows that the substrate vibrations cause a
time-periodic (ac) force acting on the tip, Fac �
M�2!�2A0 sin�2!t�. This force presents the effect of
inertia. Its amplitude depends on both the amplitude and
frequency of vibrations. Recent studies of surface diffusion
under ac forcing [6,7] demonstrated that the diffusivity D
may be strongly enhanced and even exceed the free
(Brownian) diffusivity, Dfree � kBT=�x, for an optimal
matching of the driving frequency, !, and the amplitude
A0. A similar effect has been found in our calculations. As
an example, we show in Fig. 1 the frequency dependence
of the diffusion coefficient, D���, calculated for two vi-
bration amplitudes, A � 1, 2. For both amplitudes the
diffusion coefficient exhibits a resonance behavior for
frequencies, which are close to the characteristic fre-
quency, � � 1. For low frequencies, � � 1, the tip fol-
lows the motion of the plate, performing small oscillations
around the potential minima. The energy of thermal fluc-
tuations is essentially smaller than the height of the poten-
tial barrier and as a result, the probability to escape from
the potential well is exponentially small in this case. With
an increase in �, the tip has no time to respond to the
substrate vibrations, and the amplitude of the tip oscilla-
tions increases. At resonance frequencies, � � ��, which
correspond to the maxima of the diffusion coefficient, the
tip approaches the top of the surface potential at the end of
half cycle of the plate vibrations, where the driving force,
FIG. 1. Frequency dependence of the relative diffusion coeffi-
cient (top panel, Fx � 0), the time-averaged tip velocity (middle
panel, Fx � Fdc � 0:01F0) and the friction force [bottom panel,
Fx � Kx�vt� x�] calculated for a fixed tip-surface separation
(solid curves) and including the normal motion (dashed curves);
(a) A � 1 and (b) A � 2. Parameter values: �=b � 1, � � 1,
�x;z=M!0 � 3:2, kBT=U0 � 0:01, Kxb

2=�42U0�� �
3:2 10�3, Kz�2=U0 � 0:63, Fdc=F0 � 0:01, v=V0 � 0:16,
where F0 � 2U0=b and V0 � !0b.
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Fac � 0. Then, even a weak thermal noise splits the en-
semble of tips into two parts that relax to the neighboring
minima of the surface potential, and the resonance en-
hancement of diffusion is observed. A further increase of
the frequency leads again to localized oscillations of the
tip; in contrast to the case of low frequencies here the tip
overcomes the potential barriers and oscillates between
neighboring minima of the surface potential.

Our calculations suggest that the vibration-induced en-
hancement of the diffusion can be observed in AFM ex-
periments. In this configuration the tip experiences the
influence of two potentials: the periodic surface potential
and the harmonic potential, Kx�x� xsup�2=2, due to the
elastic coupling to the support of the microscope of coor-
dinate xsup, which remains fixed. Our simulations in Fig. 2
demonstrate that the experimentally measurable root mean
square displacement (rmsd) of the tip, �L���, exhibits a
resonance enhancement for the frequency �� correspond-
ing to the maximum of the diffusion coefficient. The results
for �L��� can be fit by the Ornstein–Uhlenbeck (OU)
equation

�LOU �
������������������������
Dfree�x=Kx

q
(4)

for the rmsd due to diffusion in the harmonic potential [22],
when a free diffusion coefficient,Dfree, is substituted by the
� dependent enhanced diffusion coefficient, D��� (the
dashed curve in Fig. 2).

Under the conditions which are typical for AFM mea-
surements [14], m � 8:7 10�12 kg, U0 � 0:25 eV, and
b � 0:4 nm, we arrive at the resonance frequency !� �
!0�� � 7 104 Hz. This value lies within the frequency
interval exploited by the shear modulation technique [16]
and agrees qualitatively with the value of the frequency for
which the resonance reduction of friction under the oscil-
latory drive has been observed [14]. The experiment sug-
gested here can be considered as a diffusion
FIG. 2. Frequency dependence of the rmsd of the tip. Solid
curve—numerical simulations, dashed curve—calculation ac-
cording to the equation �L��� �

��������������������������
D����x=Kx

p
. Parameter

values: A � 1, Kxb2=��2�2U0�� � 3:2 10�4, Kz ! 1, other
parameters as in Fig. 1.
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FIG. 3. Frequency dependence of the time-averaged tip-
surface separation; solid curve—A � 1, dashed curve—A � 2.
Parameters’ values as in Fig. 1.
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‘‘spectroscopy’’ of surfaces. Measuring the ‘‘spectrum’’ of
diffusion, D���, one can determine the parameters of the
surface potential.

In AFM experiments the tip is held near the surface by
the normal load applied through the spring with the spring
constant Kz. As a result, the tip driven in a lateral direction,
also performs oscillations in the normal direction [11]. The
amplitude of these oscillations depends on the surface
potential and the stiffness of the normal spring. The effect
of normal oscillations of the tip on the lateral diffusion is
clearly seen in Fig. 1 where we present a comparison
between the � dependencies of the diffusion coefficients
calculated for a fixed tip-surface separation and including
the normal motion. In the latter case we also observed a
giant enhancement of diffusion induced by the lateral
vibrations, but the shape of D��� is very different from
that obtained for the one-dimensional case. In order to gain
insight into the effect of normal-lateral coupling on the
surface diffusion we show in Fig. 3 the frequency depen-
dence of the time-averaged distance between the tip and
the surface. This figure, as well as the tip trajectories,
demonstrate the existence of two stable surface separations
z0 and zh, which correspond to small tip oscillations in the
vicinity of the potential minima (low �) and to the large-
scale tip displacements (high �), respectively. The excita-
tion of normal motion by the lateral drive becomes efficient
only when the amplitude of the lateral tip oscillations is
large enough to feel a nonlinearity of the tip-surface inter-
action. As a result, for a given driving amplitude, the
dilatancy is observed only for frequencies which exceed
some threshold value �th, which depends on the potential
and normal load.

Figure 3 shows a sharp transition from the state with a
small tip-surface separation to the state with a large sepa-
ration which occurs with increasing frequency. It must be
noted that both the dilatancy transition and enhancement of
diffusion originate from the excitation of the large-scale tip
oscillations by the substrate vibrations. As a result, both
effects arise at the same threshold frequency, �th.
However, in contrast to the dilation which takes place for
all �>�th, the significant enhancement of diffusion oc-
curs only in a vicinity of the resonance frequencies for
which the amplitude of tip oscillations equals to b�1=2�
n�, n � 1; 2; . . . .

The dilatancy leads to a reduction of the amplitude of the
potential corrugation and of the dissipation parameter �x
experienced by the tip. This results in a decrease of the
driving frequencies and amplitudes, which correspond to
the resonances of D���, and to a broadening of the reso-
nance peaks compared to the case of the constant tip-
surface separation.

Substrate vibrations also cause a resonance enhance-
ment of surface mobility which arises under the action of
a time-independent (dc) force, Fx�Fdc (see Fig. 1, middle
panel). It should be emphasized that in the absence of vi-
01610
brations the directed motion is not detectable at the time
scale of our simulations for the value of the force, Fdc�
10�2F0�jF0j�maxj@U=@xj�2�U0=b�, chosen here.

There is a clear correlation between the enhancement of
diffusion and time-averaged tip velocity, hVi (see Fig. 1).
In the case of regular diffusion caused by the equilibrium
thermal fluctuations, the fluctuation-dissipation theorem
suggests that there is a linear relation between the diffusion
coefficient and the average velocity calculated in the limit
of zero dc driving,D � kBT�dhVi=dFdc�jFdc�0. The reason
why we do not observe the proportionality relation here is
that the enhanced diffusion is induced by the nonequilib-
rium vibrations, and the fluctuation-dissipation theorem
breaks down in this case. It should be also noted that the
calculations have been done for a small but finite driving
force, that can also violate the proportionality between D
and hVi.

The calculations performed for a dc driving force can
simulate the AFM frictional response in the limit of a very
weak lateral spring, Kx ! 0, where the applied force Fx �
Kx�vt� x� remains almost constant. However, for low
driving velocities where a stick-slip motion is usually
observed [14,15], a time variation of Fx should be taken
into account. Below we focus on the effect of lateral
vibrations on this regime of motion.

Figs. 1 (bottom panel) and 4 show the � dependence of
the time-averaged friction force hFxi and the instantaneous
friction force Fx � Kx�vt� x�, tip displacement and tip-
surface separation, respectively. One can see that, for low
frequencies the lateral vibrations do not affect the frictional
response. Both the spring force and displacement traces
show the patterns that are typical for the stick-slip behav-
ior, and the average force is independent of �. For a finite
stiffness of the normal spring the tip-surface separation,
which is initially z0, at equilibrium, starts growing before a
slippage occurs and stabilizes at a larger distance, zh, as
long as the motion continues (see Fig. 4). Since the static
friction is determined by the amplitude of the potential
corrugation, it is obvious that the dilatancy leads to a
decrease of the static friction compared to the case of a
constant tip-surface distance (see Fig. 1, bottom panel).
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FIG. 4. Time dependencies of the relative friction force,
Fx=F0, the tip-surface separation, z=b, and the lateral displace-
ment of the tip, x=b calculated for A � 1 and three frequencies:
� � 0:26 (a), 0.29 (b), and 0.32 (c). Parameters value as in
Fig. 1.
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In the vicinity of the threshold frequency �th for which
the enhanced diffusion is beginning to emerge, we find a
drastic decrease of the kinetic friction. Figs. 1 and 4
demonstrate that the lateral vibrations not only reduce
the friction force but they also transform the stick-slip
motion to a ‘‘smooth’’ sliding. However, the application
of lateral vibrations does not allow the complete elimina-
tion of the force fluctuations. Even under the optimal
conditions the variance of the friction force remains of
the order of KxA. The transition in the lateral response is
accompanied by a dilatancy transition (see the middle
panel of Fig. 4).

The main feature in Fig. 1 (bottom panel) is a reduction
of friction for all frequencies above the threshold one, �th.
In contrast to the enhancement of diffusion and mobility,
the reduction of friction does not exhibit pronounced reso-
nance features. This is a consequence of the fluctuations of
the applied force. Contrary to the calculations of mobility,
which have been done for a small constant force, in the
configuration corresponding to the friction experiments the
fluctuations of the applied force are of the order of KxA,
and they can be essentially larger than the average value of
the force. For �>�th where the substrate vibrations
01610
induce large-scale oscillations of the tip, these fluctuations
are sufficient to cause a slow motion of the tip.

In summary, we have demonstrated that lateral vibra-
tions of the substrate can dramatically increase surface
diffusivity and mobility and reduce friction at the nano-
scale. We have found a sharp transition from the state with
a small tip-surface separation to the state with a large
separation as the vibration frequency increases.
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