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Abstract
We have investigated the effect of tip flexibility on stick–slip dynamics, treating the motion of
the tip apex and the cantilever within a Langevin description. We have found that the dynamical
system, which includes the cantilever and the tip apex, exhibits a rich variety of regimes of
motion depending on the values of the dissipation constants associated with the translational
motion of the apex and the bending motion of the tip. The proposed model explains the fine
structure of the stick–slip patterns and the wide variation of slip durations, between
microseconds and milliseconds, observed in recent experiments with a friction force
microscope (Maier et al 2005 Phys. Rev. B 72 245418). The results of our full Langevin
description are compared with the predictions of the single-spring Prandtl–Tomlinson model
and the hybrid Langevin–Monte Carlo approach, which has recently been proposed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has been recognized recently [1–8] that the flexibility of a
friction force microscope (FFM) tip may strongly influence
the dynamics of stick–slip processes observed in atomic scale
friction experiments. The torsional elasticity of a typical
silicon cantilever used for atomic friction measurements is
K = 62 N m−1 [1]. However, the effective spring constant,
Keff, which is estimated in experiments from the slope of
the sticking part of the force traces, is usually much smaller
than the stiffness of the cantilever, Keff ≈ 1–3 N m−1. The
effective spring constant can be presented as the result of two
coupled springs in series, which are associated with the elastic
deformation of cantilever, K , and tip apex, k, according to
K −1

eff = K −1 + k−1. Then for the values K = 62 N m−1 and
Keff = 3.7 N m−1 taken from the experiment in [1], it follows
that k = 3.5 N m−1 and the tip apex is much softer than the rest
of the cantilever. It was found [1, 7] that this is true for most
cantilevers, irrespective of the material or shape of the tip.

Traditionally, FFM is described by a single-spring
Prandtl–Tomlinson model [3, 4, 9–11], in which an effective
mass, close to that of the cantilever, is pulled along the
surface by an effective spring Keff, which accounts for the
flexibility of both the cantilever and the tip. For a long
time it was assumed that the flexibility of the tip does

not give rise to new dynamical phenomena which are not
described by the traditional Prandtl–Tomlinson model. First
experimental and theoretical indications for nontrivial effects
of the tip flexibility have appeared only recently [1–7]. They
include observation of a wide variation of slip durations up to
several milliseconds [1], a suggestion of an additional channel
of dissipation that may result in a nonmonotonous velocity
dependence of friction [3, 4], and predictions of new regimes
of motion where the tip apex can be partially or completely
delocalized [5–7].

In a series of recent publications [5–7] the effect of
bending motion of the FFM tip, which is associated with fast
movements of the tip apex with ultra-low effective mass, on
the observable friction phenomena has been systematically
studied. The calculations have been performed within a hybrid
numerical scheme that combines a Langevin description of
the cantilever motion with a Monte Carlo treatment of the
thermally activated jumps of the tip apex. The authors of [5–7]
used a simple approximation for the jump rate and neglected
dissipative forces resulting from the motion of the apex with
respect to the surface and from the tip deformation. They
found that: (i) the motion of the cantilever measured in FFM
experiments can be very different from the rapid motion of
the tip apex which is probing the surface; (ii) the influence
of thermal effects on friction can be much stronger than
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that expected from the traditional single-spring–single-mass
description.

In this paper we study the effect of the tip flexibility on
the dynamics of friction, treating the motion of the tip apex
and the cantilever together with the rest of the tip on an equal
footing, within a full Langevin description. Contrary to the
previous works [5–7], we focus on the influence of channels
of energy dissipation associated with the apex translational
motion and the tip bending on the observable regimes of the
frictional response. A variation of the mean friction force
with the scanning velocity has been calculated, and it shows
a strong dependence on the dissipation constants and on the
stiffness of the cantilever. The proposed description explains
a fine structure of the stick–slip patterns and a wide variation
of slip durations up to several milliseconds observed in recent
FFM experiments [1]. A comparison of the results of the full
Langevin description with the prediction of the single-spring
Prandtl–Tomlinson approximation [3, 4] has revealed a range
of applicability of the latter model.

2. The model

In order to study the effect of the tip flexibility on the dynamics
of friction, we consider a two-mass–two-spring model (see
figure 1), with one mass, m, associated with the bending
motion of the tip (the effective mass of the tip apex) and
the other mass, M , accounting for the combined inertia of
the cantilever and the rest of the tip. Then the dynamical
behaviour of the system (cantilever + tip apex) is governed by
the coupled Langevin equations:

M Ẍ(t) + � Ẋ + ηc(Ẋ − ẋ) + k(X − x)

+ K (X − V t) = fX (1)

mẍ + ηc(ẋ − Ẋ) + ηs ẋ + k(x − X) + ∂U(x)/∂x = fx . (2)

Here the first equation describes the motion of the cantilever,
whose position is given by the coordinate X , and the second
one describes the motion of the tip apex with a coordinate
x . The cantilever is pulled by a spring of spring constant K
connected to a support which moves with a constant velocity
V , and the cantilever is elastically coupled to the apex through
the spring with stiffness k. The apex–surface interaction is
described by the periodic potential U(x) = U0 cos( 2π

a x),
where a is its periodicity, and U0 is the amplitude of the
potential corrugation. The parameters �, ηs and ηc are
responsible for the dissipation of the kinetic energy due to
the lateral motion of the cantilever and the apex, and due to
deformation of the tip, respectively. The effect of thermal
fluctuations on the motion of the cantilever and the apex is
given by independent random forces, fX (t) and fx (t), which
are δ-correlated, 〈 fX (t) fX (t ′)〉 = 2(� + ηc)kBT δ(t − t ′) and
〈 fx(t) fx (t ′)〉 = 2(ηs + ηc)kBT δ(t − t ′).

Within a quasistatic description of the cantilever motion,
for which k(X − x) + K (X − V t) = 0, the two coupled
equations (1) and (2) reduce to a single dynamical equation
for the apex

mẍ + ηc(ẋ − V )(Keff/k) + ηs ẋ + Keff(x − V t)

+ ∂U(x)/∂x = fx , (3)

Figure 1. Sketch of the geometry of the two-spring–two-mass model
of a friction force microscope.

where Keff = K k/(K + k) and the experimentally measured
lateral force reads as

F = K (X − V t) = Keff(x − V t). (4)

Except for the coefficient (Keff/k) which is close to unity
for K � k, equation (3) coincides with that suggested
previously in [3, 4]. One of the objectives of this study is to
understand under what conditions the reduced description (3)
captures the main features of the frictional response predicted
by the full Langevin description in (1) and (2).

3. Results and discussion

Depending on the choice of parameters, the dynamical system
described by equations (1) and (2) exhibits a rich variety of
regimes of motion. The results presented below have been
obtained for the parameters M = 5.5×10−11 kg, k = 3 N m−1

and a = 0.66 nm which were taken from the experiments
of [1]. Both stiff and soft cantilevers with K = 62 and
6 N m−1, which are used in experiments [1, 12], have been
considered. We have chosen a value of potential corrugation
U0 = 0.38 eV for which the simulations produce stick–slip
patterns similar to the experimental results [1]. For this value
of corrugation, the Tomlinson parameter γ = (2π)2U0

ka2 = 1.8.
So far not much is known about the values of dissipation
constants, �, ηs and ηc and therefore in order to understand
the effect of these parameters on dynamics we have performed
simulations in a wide range of the parameters 10−4 kg s−1 <

�, ηs, ηc < 10−10 kg s−1. Recent studies suggested very
different estimations for the effective mass of the tip apex
ranging from m = (10−9–10−12)M [5–7] to m = M/10 [1, 3].
Most of the results presented below have been obtained for the
case of overdamped motion of the apex (neglecting the inertia
term in equation (2)) that is typical for nanoscale systems.
Moreover, we have found that the frictional response is almost
independent of the apex mass m within the range 0 < m <

mmax, where mmax = 10−1(ηs + ηc)
2/[(2π)2U0/a2]. These

conditions correspond to an overdamped dynamics of apex.
For the values of parameters used in the calculations presented
below, ηs + ηc ≈ 10−5 kg s−1, 10−7 kg s−1 and 10−9 kg s−1,
the threshold mass mmax is of the order of 10−1 M, 10−5 M and
10−9 M , respectively.

Our calculations show that the shape of stick–slip patterns
for the cantilever motion predicted by equations (1) and (2)
is dictated by the values of the parameters ηs and ηc which
are responsible for the energy dissipation to the excitations in
the substrate and in the tip. The dissipation constant � mostly
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Figure 2. Lateral force ((a), (c)) and relative apex ((b), (e)) and
cantilever (d) positions versus time calculated for a stiff cantilever,
K = 62 N m−1, with a sampling frequency of 3.3 MHz. Black and
gray (blue and red online) curves show results of the full Langevin
calculations in equations (1) and (2) and of the quasistatic
approximation in equation (3), respectively. The panels (c)–(e)
display an enlarged view of the slip region. Parameter values:
M = 5.5 × 10−11 kg, k = 3 N m−1, a = 0.66 nm, U0 = 0.38 eV,
V = 25 nm s−1, ηs = ηc = � = 10−7 kg s−1.

controls damping of mechanical oscillations with a frequency
νc = √

K/M .
For ηs � 10−5 kg s−1, irrespective of the values of

other dissipation constants, the cantilever exhibits a traditional
stick–slip motion. Here each slip of the apex to the next
accessible well of the substrate potential is followed by a
corresponding slip of the cantilever. Then for low scanning
velocities where a stick–slip motion is observed, the results
of the reduced description (3) are in excellent agreement with
the direct solutions of the coupled equations (1) and (2).
However, it should be noted that in the range of higher
scanning velocities corresponding to a ‘smooth’ sliding the
calculations with equation (3) may differ from those obtained
with equations (1) and (2). This disagreement results from
the effects of an additional channel of dissipation, � Ẋ , and
mechanical oscillations at the characteristic frequency, νc,
which appear in the full description (1) and (2) but are not
included in the reduced model (3). We discuss these effects
below.

The frictional response becomes more complex for lower
values of the dissipation constant, ηs � 10−6 kg s−1.
Figures 2 and 3 show that in this case the stick–slip
events are accompanied by thermally activated jumps of the
apex between the two accessible wells of the combined
potential, Uapex(x, X) = U(x) + k(x − X)2/2 (see inset to

Figure 3. Lateral force ((a), (c)) and relative apex ((b), (e)) and
cantilever (d) positions versus time calculated for a soft cantilever
with K = 6 N m−1. Black and gray (blue and red online) curves
show results of the full Langevin calculations in equations (1) and (2)
and of the quasistatic approximation in equation (3), respectively.
The panels (c)–(e) display an enlarged view of the slip region.
Parameters as in figure 2.

figure 4). These jumps occur when the cantilever comes
close to the maximum of the potential corrugation (X ≈
an, n = 0,±1,±2 . . .) and the lateral force, F , approaches
its maximum value. Otherwise the apex is located within one
well only. For a given value of ηs the rate of the apex jumps
decreases with ηc. The jumps of the apex manifest themselves
in the corresponding oscillations of the measured lateral force
(see figures 2 and 3). As a result, the experimentally observed
slip time becomes significantly longer than that predicted by
a traditional, one-spring Tomlinson model. Our calculations
show that the effect of tip flexibility extends the slip times
from the microsecond or tenths of microsecond scale to
milliseconds, as was observed experimentally [1].

Figure 2 demonstrates that in this case the displacement of
the cantilever follows the apex jumps but for the stiff cantilever
(K = 62 N m−1) the amplitude of the cantilever oscillations is
significantly smaller (by one or two orders of magnitude) than
that of the apex (see panels (d) and (e)). It should be noted
that even in the absence of the multiple jumps of the apex (for
ηs � 10−5 kg s−1) the cantilever closely follows the motion of
the stage, X ≈ V t , exhibiting very short slips with the length,
which is of the order of (10−1–10−2)a, where a is the period of
the surface potential U(x). This is the apex that performs slips
with the length of the order of a.

Owing to the almost steady motion of the cantilever, the
quasistatic approximation (3) provides a reasonable description
of friction for the stiff cantilever with K = 62 N m−1 in a
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Figure 4. Height of the barrier which separates two accessible wells
of the potential experienced by the apex as a function of the
Tomlinson parameter γ . Black and gray (black and red online)
curves show the results given by numerical calculations and by the
analytical equation (6), respectively. Calculations have been done for
the cantilever located close to the maximum of the potential
corrugation. The potential experienced by the apex is shown in the
inset. Parameter values: U0 = 0.38 eV, a = 0.66 nm, k = 3 N m−1.

wide range of the parameters, ηs, ηc, and �. However, our
calculations show that it may be inaccurate even in this case.
For instance, we found that for ηs = 10−7 kg s−1 and ηc =
10−5 kg s−1, the full model predicts multiple jumps of the apex,
while the quasistatic approximation does not reproduce this
effect. As is shown below, this disagreement can be explained
by the effect of correlated motion of the apex and the cantilever
on the probability of the thermally activated jumps which is not
included in the quasistatic model.

A disagreement between the results of the quasistatic
approximation and the full description becomes more
substantial in the case of a soft cantilever. The slip length of
the cantilever increases with a decrease of its stiffness, K , and
for a soft cantilever with K = 6 [12] it is only twice as small
as the apex slip length. In this case one may expect significant
deviations of the results of the quasistatic approximation from
the full description (1) and (2).

In order to estimate a rate of apex jumps, r→,←, between
the two accessible wells of the potential Uapex(x, X) we use the
Kramer’s equation [13]

r→,←(X) = ωl,r (X)ωmax(X)

2πmηeff
exp[−
E→,←(X)/kBT ]. (5)

Here 
E→(X) and 
E←(X) are the instantaneous barrier
heights for the jumps from the left well to the right one and
back, which depend on the cantilever position X , ωl,r,max(X) =√

m|∂2Uapex(x, X)/∂x2||x=xl,r,max are the frequencies of small
oscillations at the minima of the left and right potential wells,
x = xl,r , and at the maximum of the potential, x = xmax,
respectively, and ηeff is the effective dissipation constant that
determines a rate of energy dissipation to the substrate and
tip. The latter quantity can be estimated as ηeff = (ηs + δηc),
where a coefficient δ < 1 was introduced in order to take into
account that correlated oscillations of the apex and tip reduce
the rate of energy dissipation to the tip.

The probability of thermally activated jumps of the
apex becomes maximal when the cantilever approaches the
maximum of the surface potential U(x). Then the height of
the barrier, 
E = 
E→(X) = 
E←(X), which separates
the two wells, and the frequencies ωl,r,max can be estimated
by expanding the potential Uapex(x, X) in the vicinity of its
maximum at x = an. As a result we get the following
expression for 
E and ωl,r ωmax


E = 1.5U0

(
γ − 1

γ

)2 (
1 + 0.2

γ − 1

γ

)
(6)

ωl,r ωmax = √
2k(γ − 1) (7)

where γ = (2π)2U0
ka2 is the Tomlinson parameter. Figure 4 shows

that equation (6) closely approximates the result of numerical
calculations of the height of the barrier in a wide range of
parameters U0 or γ . It should be noted that for γ close to
unity the height of the potential barrier, 
E , is considerably
lower than U0. In particular, for U0 = 0.38 eV, k = 3 N m−1

and a = 0.66 nm the Tomlinson parameter γ = 1.8, 
E =
0.125 eV, and equation (5) give the following estimation for
the rate of apex jumps

r→,← = 3.4 × 10−3 kg s−2

ηeff
. (8)

The above equation shows that for the dissipation
constants, 10−8 kg s−1 � ηs, ηc < 10−6 kg s−1 the rate
of apex jumps is considerably higher than the washboard
frequency, V/a, which for V = 25 nm s−1 equals 40 s−1, but
r→,← is still smaller or of the same order as the characteristic
frequency of the cantilever, νc ≈ 106 s−1. As a result in this
range of parameters the tip apex performs several thermally
activated jumps back and forth between the accessible wells
of the potential Uapex during one stick–slip event, and the
cantilever follows the jumps of the apex (see figures 2 and
3). The average number of jumps per one stick–slip interval
is reduced with a decrease of the cantilever stiffness, K ,
since for low values of K the amplitude of the cantilever
oscillations increases and it spends less time close to the
potential maximum where the jump rate is maximal (see
figure 3).

The probability distribution function (PDF) for the
time-averaged position of the apex with respect to the
cantilever, x − X , is presented in figure 5. The two
maxima in the PDF manifest the presence of the two
accessible wells in the potential experienced by the apex.
Figure 5 shows that the PDF which has been obtained from
the simulations of the nonequilibrium Langevin dynamics
is well described by the equilibrium distribution function
P(x − X) ∝ ∫

dt exp[−Uapex(x(t), X (t))]. With increase
of scanning velocity or/and the dissipation constants ηs, ηc

the nonequilibrium PDF becomes asymmetric, with a left
maximum higher than the right one, which reflects a lag
of the apex behind the cantilever. Under these conditions
(V > 250 nm s−1) a difference between the nonequilibrium
and equilibrium PDFs becomes considerable.

It should be noted that equation (5) can be also applied to
estimate the rate of jumps in the quasistatic model. In this case
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Figure 5. Probability distribution function for the time-averaged
position of the apex with respect to the cantilever. The black curve
shows results of Langevin simulations and the gray (red online)
curve presents the equilibrium distribution function. Parameters as in
figure 2.

δ = 1 and X should be substituted by V t . Our calculations
show that the quasistatic description may underestimate the
probability of the apex jumps, because it does not include
a correlated motion of the apex and the cantilever, and in
this way undervalues the apex diffusion. For instance, for
ηs = 10−7 kg s−1 and ηc < 10−5 kg s−1 the full description
shows multiple jumps of the apex and the cantilever, but the
quasistatic description predicts usual, structureless stick–slip
motion without multiple jumps.

In the Monte Carlo simulations of the apex jumps
performed in [5–7] the jump rate has been described by
an equation which is similar to equation (5) but with the
preexponential factor given by the frequency of the apex
bending vibrations νapex = √

k/m. For the parameters used
in [5–7], m = 10−20 kg and k = 3 N m−1, this frequency
equals νapex = 1.7 × 1010 s−1. Comparing this value with

the preexponential factor in equation (5) we see that in order
to get a rate of apex jumps which is comparable with that
assumed in [5–7] the dissipation constant ηeff should be of
the order of 10−10–10−11 kg s−1. Figure 6 demonstrates that
already for ηs = ηc = 10−9 kg s−1 the apex performs rapid
jumps with the rate which is higher than the characteristic
frequency of the cantilever, νc, and the cantilever cannot follow
the apex jumps. In this case the measured lateral force exhibits
a smoothened stochastic stick–slip motion with a slip time
lying in the range of 2 ms. This regime of motion has been
predicted recently [5–7] and was named ‘stuck in slipperiness’.

The stick–slip patterns, which are similar to those
presented in figures 2, 3, and 6, have also been found for
lower values of the potential corrugation, U0 (but still γ > 1).
However, in this case the thermally activated jumps of the apex
already occur for higher values of the dissipation constants,
ηs and ηc, and slip times become longer than those shown in
figures 2, 3, and 6. Thus for U0 = 0.24 eV, which corresponds
to the Tomlinson parameter γ = 1.17, the multiple apex
jumps start to show up at ηs, ηc ≈ 10−4 kg s−1, and the rapid
jump regime of motion (as in figure 6) appears at ηs, ηc ≈
10−6 kg s−1. In the latter regime we observed gradual slips
with slip times of the order of 5 ms.

Our calculations show that for the low potential
corrugation (for instance, for the Tomlinson parameter γ =
1.17) the process of slipping may pass through intermediate
states as was found experimentally in [1]. The results presented
in figure 7 demonstrate that even more than one intermediate
state may be observed. For the values of γ which are close to
unity, the slipping through the intermediate state has also been
found in hybrid Langevin–Monte Carlo simulations [6, 7].
However, it should be noted that for γ = 1.17 the height
of the barrier separating two wells of the potential Uapex(x)

is smaller than kBT , i.e. 
E = 0.32kB T. Under these
conditions the application of the Monte Carlo description of
apex motion with the jump rate given by the transition state
theory becomes problematic. We found (see figure 7(b)) that

Figure 6. Lateral force ((a), (c)) and relative apex position ((b), (d)) versus time calculated for a stiff cantilever with K = 62 N m−1. Black
and gray (blue and red online) curves show results of the full Langevin calculations in equations (1) and (2) and of the quasistatic
approximation in equation (3), respectively. The panels (c) and (d) display an enlarged view of the slip region. Parameter values:
ηs = ηc = 10−9 kg s−1, � = 10−5 kg s−1, other parameters as in figure 2.
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Figure 7. Slipping through intermediate states. An enlarged view of
the lateral force (a) and the relative position of the apex (b) in the slip
region with a sampling frequency of 3.3 MHz. Parameter values:
U0 = 0.24 eV, ηs = ηc = � = 10−9 kg s−1, other parameters as in
figure 2.

when the cantilever approaches the maximum of the surface
potential, the tip apex is completely delocalized on the interval
≈0.5a around the maximum of U(x), rather than performing
jumps between two wells of Uapex(x).

Figure 8 presents velocity dependences of the mean
lateral force which have been calculated for the stiff and
soft cantilevers. Experimental and theoretical studies of
velocity dependence of friction have attracted a lot of attention
recently [1–4, 11, 14–19], and it has been found that the
energy dissipation associated with the tip bending may result
in a nonmonotonous variation of friction with the scanning
velocity [3, 4]. As has been discussed above, the quasistatic
description typically provides a good approximation of the
frictional force for the stiff cantilever in the range of low
scanning velocities where the stick–slip motion is observed.
In this case the deviations from the full description become
significant only in the range of parameters (for instance, for
ηs = 10−7 kg s−1 and ηc < 10−5 kg s−1) where the quasistatic
description fails to reproduce multiple jumps of the cantilever
predicted by equations (1) and (2) (see figure 8(b)). For higher
scanning velocities the full calculations predict resonance
peaks in the mean lateral force for the washboard frequencies,
V/a, which are equal to the characteristic frequency of the
cantilever, νc, and its multiple harmonics and subharmonics.
These resonances are absent in the quasistatic description.
It should be noted that the resonances predicted by the
full Langevin description are washed out for higher values
of the dissipation constants, � and ηc. Another source
of disagreement at high scanning velocities stems from the
influence of an additional channel of dissipation, � Ẋ , which
appears in the full description (1) and (2) but is not included in
the quasistatic approximation.

In contrast to the case of the stiff cantilever, for a soft
one the mean friction force calculated within the quasistatic
approximation deviates significantly from the result of the
full Langevin description over the entire interval of velocities
considered here (see figure 8(c)). This disagreement results
from a considerable departure of the trajectory, X (t), of the

Figure 8. Time-averaged lateral force as a function of scanning
velocity. Insets present an enlarged view of the low velocity region.
Black and gray (blue and red online) curves show results of the full
Langevin calculations in equations (1) and (2) and of the quasistatic
approximation in equation (3), respectively. Parameter values:
(a) K = 62 N m−1, ηs = ηc = � = 10−7 kg s−1,
(b) K = 62 N m−1, ηs = � = 10−7 kg s−1, ηc = 10−5 kg s−1, and
(c) K = 6 N m−1, ηs = ηc = � = 10−7 kg s−1, other parameters as
in figure 2.

soft cantilever from the steady motion V t . For K = 6 N m−1

the slip length and the length of the cantilever jumps become
of the order of the period a.

Explicitly including the dynamics of the tip apex not
only affects the shape of the stick–slip oscillations and the
magnitude of the mean friction force but also influences
the value of critical velocity, Vc, for a transition from the
stick–slip motion to sliding. Thus for the parameter values
used in figures 8(a) and (c) the full Langevin description
gives Vc ≈ 20 μm s−1 and 10 μm s−1, respectively, while
the quasistatic approximation predicts a much higher critical
velocity, Vc ≈ 3 mm s−1, for the corresponding values of
parameters. The values of the critical velocities predicted by
both models decrease with increase of the dissipation constants
ηs, ηc associated with the apex motion, and only slightly
depend on �.

4. Summary

We have investigated the effect of tip flexibility on
the dynamics of the stick–slip motion observed in FFM
experiments. Both the motion of the tip apex and the cantilever
have been treated within a full Langevin description focusing
on the effect of different energy dissipation channels on the
frictional response. The dynamical system, which includes
the cantilever and the tip apex, exhibits a rich variety of
regimes of motion, depending on the values of the dissipation
constants associated with the translational motion of the apex
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and the bending motion of the tip. The proposed model
explains the fine structure of the stick–slip patterns and the
wide variation of slip durations between microseconds and
milliseconds observed in recent FFM experiments [1]. We
have found conditions under which the results of the full
Langevin description agree with the predictions of the hybrid
Langevin–Monte Carlo approach introduced in [5–7]. A range
of applicability of the quasistatic approximation (single-spring
Prandtl–Tomlinson model) has been established.
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