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A b s t r a c t  

The effects of specific interactions in a two dimensional coulombic system axe 
investigated. In the framework of a field theoretical approach, we have shown tha t  
the  electric properties of the system are strongly modified when two ionic species 
have a tendency to demix. By means of a Langevin dynamics, we investigate here a 
model system where, in the absence of electrostatic interaction, the specific interac- 
tions are such that  the system demixes. This  phase separation cannot  take place in 
the  presence of the coulombic potential, as a result of the electroneutrality condition 
in the system. The snapshots of the system obtained in the s im~at ion ,  show large 
local concentrat ion inhomogeneities, which are also charge inhomogeneities reminis- 
cent of the  tendency of the two species to separate. This is an unusual  feature in a 
charged system, as it corresponds to the gathering of ions of the same sign. These 
inhomogeneities are consti tuted by a continuous network of lines of ions of the same 
species, the adjacent line being of the opposite sign. This s tructure is similar to a 
bicontinuous phase. One property of these lines: the average distance between the 
lines, has  been studied by means of a simple field theoretical model. The  Hamil- 
tonian includes entropy, electrostatic and specific interactions. In the mean field 
approximation,  we obtain a distance between the lines in agreement with what  is 
found in the simulation. © 2000 Elsevier Science B.V. All rights reserved. 
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I n t r o d u c t i o n  

In a recent paper  [1], we have discussed the effect of specific interactions on the electric 
properties of ionic systems. Using the fact that  concentration and charge fluctuations 
are related, we showed that  any modification of the concentration fluctuations has strong 
repercussions on the electric properties of the system, for instance the screening length. 
This effect is all the more dramatic,  when the virtual non charged system approaches 
a demixion transition, the concentration fluctuations are enhanced and screening in the 
system is also expected to increase. 

In this paper, we focus on the competit ion between the long range coulombic inter- 
action and short range specific interactions. The coulombic interaction tends to associate 
ions of opposite sign and separate ions of identical sign, leading to the usual screening and 
in the case of the two dimensional Kosterlitz-Thouless transit ion [2] to the pairing of ions. 
To oppose this effect we choose for the specific interactions those of a non charged binary 
mixture which demixes. The purpose of this work is to s tudy the consequences of this 
competition. In part icular  considering the difference in range of the two interactions, can 
one expect a new length scale, dividing different kinds of behaviour ? Is it then possible 
to expect some peculiar spatial  redistribution of the two species, or even appearance of 
new phases ? 

In this paper, we investigate a two dimensional charged system. We describe it in 
Section 1 and present our choice for the specific interactions. Using simple arguments, we 
compare the behaviour of the systems with only specific interactions, with only coulombic 
interactions and with both interactions. Then we perform Langevin dynamic simulations 
for these systems in Section 2. A peculiar spatial  organization of the particles is found. In 
Section 3, we present a simple model describing one characteristic feature of the obtained 
results. 

1 T h e  s y s t e m  

We consider a binary system in two dimensions. The two species can interact via two 
different potentials:  the coulombic potential  and a short range specific potential.  The 
Coulomb potential  energy between two charges ei and ej is: 

e~ej . r 
~y,~(r) = ~ ~n 70'  (1) 

where ro is an arbi t rary  length defining a reference potential,  e is the dielectric constant 
accounting for the media and fl --- (kBT) -1 is the inverse temperature.  We take r0 = 1 
and the species are assumed to carry one unit of charge. The specific interaction potential 
is: 

flVij(r) = Aoe -r'/'2 where i , j =  + , -  (2) 

a is the length scale for the specific interaction which is also taken equal to 1. 
To understand the competit ion between these two interactions, we will first describe 

qualitatively systems interacting with just specific interactions, then with only electro- 
static interaction and finally with both of them. 
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1 .1  N o n  c h a r g e d  s y s t e m  

We want our system to demix in the absence of electrostatic interaction. In a binary 
mixture, we can distinguish two types of second order phase transitions, a pure demixion 
dominated by concentration fluctuations, and liquid-gas type phase transition dominated 
by density fluctuations [1]. The latter is characterized by a vanishing inverse compress- 
ibility. To rule out this possibility we take purely repulsive potentials. The demixion 
is achieved by choosing a strongly repulsive component A+_, thus we have chosen the 
coefficients to be A++ = A__ = 1.5, and A+_ -- 7.5. 

The existence of a phase separation can be assessed on the simple level of the second 
virial coefficient approximation. We consider the system in two different states, the first 
represents the phase separation: the two species are separate and remain confined to their 
half-spaces. The second represents the mixed state for the system: the two species are 
evenly distributed over the entire available space. The corresponding free energies per 
particle in kBT units, F :~  ° and F~,7 ° respectively, can be expressed in terms of integrals 
of the Mayer functions, I ,  and I~: 

Is = f [e -~y"(r) - 1] 2~rrdr 

I ,  = f [ e  -~v+-(r, - 1] 2~rrdr. 

We find that  

where i = -}-or - (3) 

(4) 

F•O e----0 _ F~i= _1 in 2 p+ + p -  [I,  - I , ]  (5) 
2 4 ' 

where p+ and p_ are the densities of the species when the whole surface is accessible. The 
numerical values of the densities are the ones that have been chosen for the simulations in 
Section 2: p+ = p_ -- 0.32. With the potential we have chosen, we obtain p+(Is -  I,,)/2 = 
0.76. The entropic contribution is (log2)/2 = 0.35, which yields F :~  ° - F~7 ° = -0.41. 
The state, corresponding to the demixion, is more stable. The entropic contribution, 
which is positive favours the mixing of the species, but this is overwhelmed by the specific 
interactions which finally produce the demixion of the system. The existence of this phase 
separation has been verified in the framework of the simulation presented in Section 2. 

1 . 2  C h a r g e d  s y s t e m ,  w i t h o u t  s p e c i f i c  i n t e r a c t i o n s  

The properties of the two - dimensional Coulomb gas have been thoroughly studied in 
the literature [3]. We shall just point out an obvious although essential aspect of charged 
systems: attraction between opposite sign species and repulsion between ions of the same 
sign. This results in screening. In the case of two dimensional systems, for temperatures 
low enough we can also have ion pairing. 

1 . 3  C h a r g e d  s y s t e m  w i t h  s p e c i f i c  i n t e r a c t i o n s  

If we start from the system with only short range interactions, and switch on the coulom- 
bic interactions, we can see from simple scaling arguments that there can no longer be 
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a phase separation. The electrostatic energy, of the system where we assume we sepa- 
rate the two species, scales as L21ogL where L is the typical dimension of the system. 
This contribution proportional to the square of the electric field is positive. When we 
assume that  the two species mix and we neglect fluctuations, the system is neutral and 
this contribution vanishes. When we try to separate the two charged species, this large 
positive contribution to the energy prevents the appearance of macroscopic phases in the 
thermodynamic limit. 
If we start from the pure coulombic system and then introduce the specific interactions, 
the screening or the ion pairing will now be antagonized by the effect of the short range 
specific interactions. Although, as we have seen above, a macroscopic phase separation 
cannot take place, we can expect locally some redistribution of the species. 

2 S i m u l a t i o n  

2 .1  P r o c e d u r e  

We have studied the system using Langevin dynamics [4]. The equations of motion are: 

:~ (t) = ~ f,~,,,~,(t) - ~÷,~(t) + .:,~(t), (6) 
i'j' 

i = +, - labels the type of particle, and j labels the particle within a species, the mass 
of the particles is taken equal to 1. ] i j ( t )  is a stochastic force representing the thermal 
equilibrium with the heat bath. The viscous force ~÷i is a relaxation contribution. These 
stochastic forces distributed according to a Gaussian random distribution verify: 

< ] , j ( t ) f i ,~ , ( t ' )  > =  2yTS i i , 5 ( r , , j ,  - ri~)5(t '  - t ) ,  (7) 

where < ... > represents the average over the system, where T is the temperature of the 
system and 77 is the friction coefficient which is taken equal to 1. The particles interact 
with forces derived from the potentials given in equations (1)-(2). The characteristic 
time scale of equation (6), is given by ~?-1 = 1. We introduce the Coulomb interaction 
parameter F =/~e2/E where e is the absolute value of the charge. F defines the electrostatic 
interaction with respect to the thermal energy. The temperature scale and F are set to 1. 
In these units, the coulombic interactions and the specific interactions are comparable and 
of the order of one. The system is simulated in a square box with periodic boundaries, 
for a total number of particles ranging from 256 particles up to 1024 particles. We have 
verified that  the results presented here do not depend strongly on the geometry and the 
type of boundary conditions. 

2.2 S i m u l a t i o n  R e s u l t s  

2.2.1 Non coulombic system 

In the absence of electrostatic interaction, the starting configuration is that  of the two 
species separated in two parts of the box. We have observed that the species do not mix 
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and remain separate for times long enough in comparison with the relaxation time of the 
system. 

2.2.2 Pure coulombic system 

We have performed a simulation with just electrostatic interaction, the result is shown 
in figure 1. With F = 1, we are in the high temperature regime, above the Kosterlitz 
Thouless transition [2] and we observe both screened ions and pairs of ions of opposite 
charge. 
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Figure 1: Snapshot of the simulation of the purely coulombic system. 

2.2.3 Coulombic system with specific interactions 

In the system with both specific and electrostatic interactions, a typical distribution of 
the ions is shown in figure 2. The spatial distribution of the two species is very different 
from the previous cases. The two particles no longer separate in distinct phases, and 
are distributed over the whole surface. Oppositely charged particles do not associate. 
However, we distinctly see inhomogeneities in the distribution of the ionic species: chains 
of ions of identical sign. This is quite in contrast with the familiar notion of ion pairing. 
However, a line of a given sign is surrounded by lines of the opposite sign. We can obtain 
an estimation of the distance between the lines, of the same sign, this is approximately 
4.5 -I- 0.4. 

Note that this length is not the Debye length .~D = [27r(p+ + p_)e~/(kBTe)] -1/2 
0.5, indicating that  the properties are now quite different from those of the purely coulom- 
bic system. 
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Figure 2: Snapshot of the simulation of the system interacting with both electrostatic 
and specific interactions 

3 T h e o r e t i c a l  m o d e l  

We want to derive a simple theoretical model capable of describing behaviours of the 
system, in the presence and absence of the electrostatic interaction. We focus on the line 
structures visible in the snapshots. 

3 . 1  F i e l d  t h e o r e t i c a l  d e s c r i p t i o n  

3 . 1 . 1  T h e  H a m i l t o n i a n  

We use a field theoretical description [5, 6], the system is described by a Hamiltonian with 
the following contributions: entropy, electrostatic and specific interactions. 
The entropic contribution is: 

/~He"t = / dr p+(r) [log P+(por) - l] + p_(r) [log P : )  - l] , (8) 

where p• is a reference density for the evaluation of the entropy, p+ (r) and p_ (r) represent 
space dependent density fields for the two species. 
The contribution from the electrostatic interaction is: 

,/3H a ~ -  e2 f d r i d r j  q(ri)q(rj)log(rij) (9) 
ekBT k r• / ' 

where q(r) = p+(r) - p_(r). Finally the contribution from the specific interactions has 
the same form as for the particle-particle interaction in the simulation, and is given by: 

= f dridrj [p+(ri)p+(rj)A++ + p_(ri)p_(rj)A__ + 2p+(ri)p-(rj)A++] /3 H'p ~ 

exp ~ - ~  ( ~ j .  (lo) 
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Numerical values for the parameters are the same as in Section 1. 

The partition function of the system is written: 

Z = f I I  :Dp+(ri) ~p_(r j )  exp{-/~H [p+, P- l} ,  
r i , r j  

(11) 

where the ~p+(ri):Dp_(rj) denote functional integration and H = H ~'~t + H ~zec + H ~ .  
The system is defined in a finite surface of dimensions L 2 and there is a given number 
of particles N+ and N_. We define the following reference densities: pO+ = N+/L  2 and 
pO_ __ N _ / L  2, which take the same values as in the simulation, that  is p0+ _ p0_ _-- p0 __ 0.32. 

3.1.2 Reduced functional integral: Gaussian line density functions 

To calculate Z, we further simplify the problem considering a limited set of functions in the 
functional integration. Bearing in mind the line structure visible in the snapshot, in figure 
2, we assume density distributions which vary along one direction only, for instance the 
X-axis, that  is fines parallel to the Y-axis. Furthermore we assume that  the x dependent 
density profiles can be written as a sum of Gaussian profiles, characterized by only two 
parameters: I, which is the distance between two subsequent Gaussian distributions of a 
given sign and ag which represents the relative width of one Gaussian density distribution. 
The oppositely charged particles are also distributed on a sum of Gaussian distributions 
with a displacement of I~/2 from the previous set. We shall consider that each Gaussian 
contribution to the whole density distribution can be considered as a line of a given 
species. The number of lines is Nl = L/ l , ,  the density profiles are then written: 

p0+ (i _- _~)~ 
p+(r) - agvr ~ ~ exp{ 2 } I<~<N~ 2aa 

p0 1/2) 
p_(r) - osv  X: exp{ ((i+ }' (12) 

where ~ is the coordinate on the X-axis in l~ units. 
Although simple, this representation of the densities is sufficient to distinguish between 
two different situations. In figure 3 we give a section of the profiles for l~ = 4.0 and two 
different values of as: 0.05 and 0.50. A large value of a s corresponds to a density profile 
for the species which strongly overlap describing a mixing of the two species. On the 
contrary a small value of a s corresponds to distinct domains for the two species. Also a 
large l~ with a finite a s corresponds to the existence of a macroscopic phase, with a given 
ratio of the two species. 

The partition function is now written: 

Z ~ C f dl, dag exp { - H [l,, ag] }, (13) 

where C is a normalization constant. We now give explicitly the different contributions 
to the Hamiltonian as functions of l, and a 9. 
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Figure 3: Density profiles for l= = 4.0, for two values of a 9. The figure on the left is for 
ag = 0.2/l= = 0.05, the figure on the right is for ag = 2.0~Ix = 0.5. p+ is plotted in full 
line, p_ in dotted line. 

The contribution from the entropy per particle is: 

H ent fo "t 
N+ + N_ - 2 ~+(~)[log/3+(~) - 11 + ~_(~)[log/5_(~) - 1] d~, (14) 

where ~ is the abscissa in l~ units and Pi = Pi/P °. Because of the scaling properties of 
p+(r) and p_(r) this quantity does not depend on l=. 

The assumption that  we have only x dependent profiles, allows a simple calculation 
of the electrostatic energy. The electrostatic energy can be rewritten in terms of the 
electric field: 

He,~c_ e [ E2(r)dr (15) 
2kBT J 

We consider the lines to be infinite along the Y-axis, although the system only delimits a 
finite portion of length L of these lines. The field is orthogonal to the Y-axis, and given 
the periodicity in the X direction of the system, it is possible to calculate the electrostatic 
energy of a strip: which is the portion of profiles for x between 0 and l~/2, see for instance 
figure 3. A simple use of the Gauss theorem gives the electric field in terms of the profile: 

E(~) = q(~) , (16) 
6 

where q(~) = e f0~ ~o+ (U) - p _  (k')]d~' is the line density of the charge between the abscissa 
0 and k given in l= units. Because of the electroneutrality of one strip, there is no influence 
of this strip on the neighbouring ones. Multiplying by 2Nt, i.e. the number of strips, we 
find that the electrostatic energy per particle is: 

Hetee 2 rl /2 r f ~  ] 2 

N + + N _  tJ0 J 
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Finally the specific interaction contribution, per particle is: 

H,p~c p lx [ 2 1 J[ - -2 12 
- -  d:rl dr2 e x p { - r l 2 ~ }  

N + + N _  2 Jo 
~5+(xl)~+(x2)A++ + ~_(x l )~- (x2)A- -2~+(x l )~- (x2)A+-]  , (18) 

where the points 1 and 2 are defined by rl = (x l , y l )  and r2 = (x2,y2) and r12 is the 
distance between them in l~ units. The integrals are such that point 1, is restrained to 
the strip and point 2 is in a range from particle 1 corresponding to the interaction poten- 
tial, not necessarily in the same strip. The integral on Yl has been performed using the 
translational invariance of the system along the Y-axis. 

3 . 2  M e a n  F i e l d  a p p r o x i m a t i o n  

In the mean field approximation, we minimize the Hamiltonian with respect to the density 
profiles p+ and p_. With the trial functions, it amounts to calculate the two parameters 
l MF and o "MF minimizing H: 

5H -- 0 ,  (19) 

5H -- 0.  (20) 

The contributions to the Hamiltonian as a function of l~ and ag are given in equations 
(14), (17) and (18). 

3 . 2 . 1  N o n  c o u l o m b i c  s y s t e m  

We show in figure 4, the energetic contributions to the Hamiltonian from the entropy 
and the specific interactions, as a function of ag and then as a function of lx. As an 
illustration, we have chosen respectively two fixed values of lx = 5.0 and ag -- 0.13. 
The competition between the mixing effect of the entropy and the demixing effect of the 
specific interactions is visible at constant Iz, as the energy minimum with the parameter 
ag. For a fixed value of ag = 0.13, we see that the specific interactions favour large l~, as 
stated in eq. (14) the entropy is independent of l~ and does not contribute. The global 
minimum corresponds to l M F  - +  co and a M F  ----- 0.13. The corresponding density profiles 
are shown in figure 5 for l~ = 104, the profiles for any larger value of l~ are similar. It 
is important to note ' tha t  the value of ag is sufficiently small to state that  the spatial 
distribution of two species is well localized. This means that in the limit of infinite lx we 
have a phase separation between the two species. If ag had a larger value we could not 
conclude on phase separation because of the overlap of the densities of the two species, 
as shown in figure 3. 
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Figure 4: H per particle in kBT units (full line) as a function ofag and l=, with respectively 
fixed values of I= -- 5 and a 9 -- 0.13. The entropic contribution and the specific interaction 
contribution are plotted in dashed line and long dashed line respectively. 
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Figure 5: density profiles in the absence of electrostatic interaction, for lx -- 10000, for 
ag --- 0.13. p+ is plotted in full line, p_ in dotted line. 

3.2.2 Pure coulombic sys tem 

We show in figure 6, the energetic contributions to the hamiltonian from the entropy and 
electrostatic interactions, for the same values of the parameters, as in figure 4. At fixed 
ag, the effect of the electroneutrality in the system tends to cancel the inhomogeneities, by 
a vanishing lx. And at fixed Iz both the entropy and the electrostatics tend to spread the 
profiles, which is equivalent to mixing the species. The minimization of the hamiltonian 
in this case yields l~ -+ 0 and ag --+ oo, which corresponds to a complete mixing. There is 
no apparent structure in the system, the corresponding density profiles are flat for both 
species. 
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Figure 6: H per particle in k s T  units (full line) as a function of % and l~, with respectively 
fixed values of Ix -- 5 and % -- 0.13. The entropic contribution and the electrostatic 
interaction contribution are plotted in dashed line and dotted line respectively. 

3.2 .3  C o u l o m b i c  s y s t e m  w i t h  specif ic  in t erac t ions  

We now consider, both electrostatic and specific interactions. In figure 7 we see that 
for a fixed value of l~, the electrostatic contribution and the entropy favour spreading 
of the profiles which corresponds to large values of ag equivalent to the mixing of the 
species. In contrast, the specific interactions chosen do not favour the mixing of the two 
species, inducing small values of ag. The two competing effects find a compromise in the 
minimttm. For a fixed ag, the electrostatics favours small values of l~, once again trying 
to reproduce electroneutrality whereas the specific interactions lead to a separation of the 
two species. Also in this case the two opposing effects generate a minimum. Finally, we 
can compute the global minimum of H, in the (lx,%) parameter space and the result is 
quite different from the previous cases. 

The mean field values of the parameters are now: l MF = 4.17 and a MR = 0.146. 
These are in fact the values chosen to plot figure 7. The density profiles for this set of 
parameters are given in figure 8. Both the distance between the lines and the relatively 
small finite value of % for well defined lines, seem in agreement with what is visible in 
the snapshot of the simulation, figure 2. 

The change in behaviour of the system is significant. With only specific interactions 
there is macroscopic demixion into two homogeneous phases. When there is only coulom- 
bic interaction the system is homogeneous and electroneutral. In both cases there is no 
internal structure as for the third case of competing interactions, there are well defined 
lines and the length l~ different from the Debye length appears. This length defines a scale 
intermediate between that  of the specific interaction and the macroscopic length scales. 
The existence of series of lines of ions of the same sign in the snapshots, is in agreement 
with the notion of local demixion introduced in [1]. 
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4 C o n c l u s i o n  

In this paper we have seen that specific interactions deeply modify the behavior of a 
coulombic system. This behaviour results from two antagonistic effects - the mixing effect 
of electrostatics and the demixion induced by the short range potentials. The two effects 
coexist in the system with local demixion and induce the phenomenon of clustering of 
ions of the same sign in contrast with the familiar notions of screening and ion pairing of 
oppositely charged ions. 

An important feature of the competition between coulombic and the specific inter- 
actions is the new length. The specific interactions dominate in the length scales shorter 
than this length where they violate the electroneutrality. In the larger length scales the 
coulombic interactions no longer admit the charge inhomogeneities created by the specific 
interactions. The microphase separation is organized into the lines visible in the snap- 
shots suggesting an analogy with bicontinuous phases. There seems to be an interesting 
parallel between surfactant systems in which the stoichiometric relations can be expressed 
by long range coulombic like interactions [7] and the coulombic systems which can lead 
to surfactant like structures reported here. 
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