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Magnetic-field penetration and structure of the mixed state in a superconductor
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Magnetic-field penetration in superconductors with a multicomponent order parameter is discussed. Numeri-
cal simulation of the process is performed for a wide range of the external magnetic field and internal
parameters of the system. It is found that the kinetic process of the vortex penetration regularly produces
domain boundaries separating phases with different realizations of the equilibrium order parameter. As a result
a new(mixed) vortex state can appear. It contains two different types of vortices connected to pairs and chains
by the surface domain energy. The lattice formed by such vortices has a symmetry lower than hexagonal or
tetragonal ones.

[. INTRODUCTION merical simulation of the magnetic-field penetration into su-
perconductors with anisotropic pairing. The simulation is
The nontrivial localized structures in superconductorsbased on the time-dependent Ginzburg-Landau model
with multicomponent pairing as well as superfliile have  (TDGLM). This model self-consistently takes into account
been actively studied recently. The ordering kinetics and toall components of the order parameter and the magnetic-field
pology of nonlinear excitations in these systems have manyector potential. These equations give a rigorous description
common feature$:® In particular, the multicomponent na- of the system given the appropriate initial and boundary
ture and anisotropy produces a solitary vortex of complicateg¢onditions>2°
structuré™* and modifies the interaction between In particular, when the magnetic field penetrates into a
vorticest#13© uniformly ordered superconducting system the TDGLM al-
The multicomponent nature of the order parameter in suckows one to describe carefully both the kinetics of the pen-
systems leads to phase domains with equivalent energies agetation process and the resultant stationary struétufélt
different equilibrium realizations of the order parametershould be noted that some of these structures found do not
components. Within the domain boundaries the order paraneoincide with a simple picture predicted from naive mean-
eter has a complicateower) symmetry with all compo- field estimations. Sometimes the final distribution of the vor-
nents nonzero. It favors the generation of vortex excitationsices can be even the nonequilibrium state. Thus, it repre-
inside the domain boundariésThese properties were sents a memory about “frozen” kinetics. Nevertheless, this
predicted and reproduced recently for the ordering kineticsstructure is determined by the penetration process, which
in numerical experiments*® normally appears in kinetics, and as such it must be treated
Vortices with a magnetic flux appearing at intermediateas a physical state and expected to be obseivéd.
stages of the kinetic scenario are anisotropic. The anisotropy Experimental information about real systems can be ob-
can be generated by the crystal lattice anisotr@pyhis case tained from positions and structurdorm factop of the
it is reflected in rhombic terms in the gradient part of the freemaxima of the correlation function which is observed in
energy functiond'9 as well as being due to the multicom- small-angle neutron scatterift§ANS) experiments on a vor-
ponent nature of the order parameter by it88If. tex lattice?®-32
A more complicated picture appears in the presence of an
external magnetic field. It was predicted from semianalytical
estimations that a different equilibrium configuration of the Il. TIME-DEPENDENT GINZBURG-LANDAU MODEL
order parameter zeros can generate different vortex lattices
and produce phase transitions between these strucfunes.
turn, the vortex anisotropy lowers the symmetry of the vor- We apply the standard Ginsburg-Landau free energy
tex lattice down to a rhombic lattic& All recent theoret-  functional expanded over order parameter variablgs
ical studies predict some deviations of the vortex lattice from=1[7x, 7y]:
the traditional triangular lattic&°
The deviation of the vortex lattice from the traditional one
is caused by the competition between the magnetic field andf = _f ddr
the effect of anisotropy. It takes place when the energy of the
anisotropy is comparable to the magnetic energy. In this case 4 kY o * ko
the variation of the order parameter and the magnetic field |+ KaDE Dy +KDE 7D
vector potential has to be accounted for self-consistently in a
frame of numerical simulation. In the present study we show +K3Df 75D+ KD} 7D+ (VXA (D)
that the above competition between energies can lead to new
nontrivial vortex structures in these systems.
The goal of this paper is to present the results of a nu- These variables appear from an expansion of the aniso-

A. Free energy
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tropic superconducting gaf(k) over functions®;(k) be- S=nn* =|nd*+In?

longing to one of the irreducible representations of the crys-

tal point groupA (k) =3 »;®;(k). This expansion creates a S =P=[nl*—Inl? S=2M, S3=2L,
vector order parameter with complex coefficienjs= 7,

+in, and n,=n3+in,. Here, the following notation is I= 11V 2= 12V 1+ 93V 9= 14V 35— AlS),

used:a=a(T—Tc), Di=di—i gA;, j=x)y; y=187, 9  gne can rewrite the free energy functional, EL}, in a more

=el/mhc; andA=(A,,A)) is the vector potential. convenient form:
Specific properties of particular systems are associated
1
_ Q2
/ EREEEE
()

with the phenomenological constantsg, ,3,,83, andK;. 1 1

The free energy functional and TDGLM equations can be F[SJ]=5 fddrHZEj(VSj)z"_Jz
derived from microscopics®® The corresponding phenom-

enological constants in the equations can be restored from 5 ) )
the microscopic parameters of the system. However, from a ~ P25 7 bsSsH ¥(VXA)
phenomenological point of view only the magnetic stability

This functional generates a relatively compact system of
Ki+Ko+Ks>|Kgl, Ki>[Kyl, Kz>0 TDGLM equations,

and positiveness of quadratic form an; ;
P | =47 (CD2A- Yyt pTA)

B3 ,32+|,32|

>
2 2 0.

B1+ B+ Ps +mn

2 (?M (3
j
restrict these constants.

A 1
B. TDGLM equations, and initial and boundary conditions at On— VX (VXA * Kz[(an 727 712 M)
A seg of coupled equations for the TDGLM has been +(13V 72— 12V 13) — A|S| 1+ Ea(r, )}, (4)
derived® for the general case of superconductors of mided
ands Symmetry from the Gor’kov equa“ons It was app“ed which can be |n|t|a”y analyzed in terms of the reduced con-
in particular, to study the structure of a solitary vortex in aStants
superconductor with anisotropic pairity!°Here we use the

following representation for the TDGLM equations: = 2B2+ B3
B1t+ B2+ B3’
=Ty taTD. oo Po
B1t B2t B3
IA SoF before numerical simulation. Here and below we use the fol-
2t - Tagatéany), (2 lowing reduced variables:
wherel” andI", are positive relaxation constants. Equations 7= 7 7 /'31+'82+'B3
(2) describe the evolution of the order parameter components b a '
»; at the onlyd-wave pairing symmetry. Some additional
freedom comes here from the inclusion of random fluctua- I K,
tions. All fields of the problem are supposed to fluctuate QAZW’ §= a
independently with Gaussian correlatgg;(r,t))=0 and
(&(r ) &(r' 1)) =) d(r—r")s(t—t"). as in previous article$.We suppose that the Ginzburg-

To study field penetration we solve E@R) at fixed initial ~ Landau parametet>1 (as it is for novel superconductors
conditions. These conditions correspond to one of the uniBesides, we limit ourselves by the approximation of small
formly ordered states. The possible states are determined Isguare anisotropy|K,|, |Ks/<|K;| used in previous
the given relations between the phenomenological constantstudies>® As seen from Eq(3), at|K,|, |K3|<|K,| the sym-

It is convenient to classify these states using the followingmetry of the equilibrium uniform structure is completely de-
cyclic variables:ny 7,=L—iM and 7} »,=L+iM, where  termined by the factoris, s at the invariantd/ andL, respec-
tively.

Simple analysis gives the possible uniform structures
classified in Ref. 6. It is shown in Ref. 6 that some symmetry
. . transformations perform mutual permutations of the physi-

L= (o my+ my 1)12=[1m3+ 1274]- cally equivalent phases. Due to this, we can restrict further
numerical simulations by one of the phagssnplest for an

Introducing the order parameter densBy (S;,S,,S3) analysis and graphic presentation of the regultsis seen
and the superconducting curreht from the structure of[S,J] that the simplest configuration

M = (7% 7y— my m)I2i =ie(nX n*)12=[ 91 14— 17273],
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FIG. 1. Two typical kinetic scenarios of the penetration of a magnetic field which lead to the creation of two different final states in the
phase diagram»;#0,7,=0 in (a) and 53,#0 in (b), respectively. The densities of the different components of the order parameter are
shown by gray-scale maps normalized to the difference between the maximum and minimum of each ordering field. The initigl state (
=1,m,34=0) is the same for botke) and(b) cases. The pictures at the left side correspond to some initial but already nonzero time.
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appears in equilibrium whebh—0 andM —0 atb;<0 and stable mixed state. In this state the superconducting order
b,<0 (it corresponds to phase Il in Ref).6n this phase two  parameterS= n7* =|7,/*+|»,|> has two sets of minima
kinds of equilibrium domains are possible. The equilibrium(vorticeg with different magnitudes of th& density and, as
values of the order parameter=[ 7,,7,] in the domains a result, with different magnetic fluxes inside the vortices.
are given by the relationg=[7y,0], where ,#0 and 5 The results of numerical simulations are summarized in
=[0,ny], »y#0, respectively. At the same time the valuesFigs. 1-5. Let us discuss first of all qualitatively the kinetic
M andL are not equal to zero only inside the domain walls.scenario and resulting structures expected. For this goal it is
So, as the initial condition for a uniform state one can takeconvenient to use the order parameter components
simply [#7,|=7,=1,77,34=0 (or alternatively |n,|=73 5, ... 7, instead of the physically measured value of the
=1,7124=0). magnetic flux. These components were used already for a

For definitenessto reduce the number of possible combi- mean-field description. In these terms the newly found mixed
nations of the parametgrae restrict the present study by the state contains two ordered componens:[ 7;,0,73,0]
subspaceb;=hb,<0. This choice in particular can be sup- with different 7, # 73, but nonzero magnitude@ contrast
ported by the results of a renormalization-group study of theo the mean field predicting one ordered component in sector
problem® This study shows that the effective renormalizedb,<0 andb,<0).
parameterd; andb, are attracted to the vicinity of the line The mean-field approximation is valid for a uniformly
bs=b, in sectorb;<0,0,<0. It corresponds t@,—0. Nu-  ordered system only. Penetration of the magnetic field pro-
merical simulations for other negative; and b,(8,#0)  duces a nonuniform distribution of the order parameter. Es-
give qualitatively the same results. pecially it is essential in the vicinity of the vortices where the

The boundary conditions foh are given by the require- magnitude of one of the components of the order parameter
ment that the magnetic field at the external surfaces of theurns to zero. In this region the nonzero value for another
sampleB=V XA, must be equal tbl.,;. Here the magnetic component(which was suppressed in the uniform sjaite
field is measured in units of the upper critical fiehtl,  found to be more preferable. It grows and suppresses other
= ¢o/2E? and the vector potentigh in units of H.,£(0),  fields of the problem in some neighborhood. Below we con-
respectively. Let us note also that we consider a twocentrate on Kinetic scenarios for the particular initial condi-
dimensional problem, i.e., cylindrical geometry with a squaretions 7, # 0,7, 3 4=0.
cross section. This means that the sample is assumed to be Two typical kinetic scenarios of the field penetration of
infinite in thez direction and all derivatives along this direc- the magnetic field for two different states in a phase diagram
tion can be neglected:**3* For definiteness all numerical are presented in Figs(d and Xb), respectively. The densi-
procedures were done where the value of the Ginzburgies are shown by gray-scale maps normalized at every time
Landau parameter is chosen to e 20; i.e., we consider a moment into a difference between the maximum and mini-
strongly pronounced type-Il superconductor. mum of each ordering field. The first scendrstnown in Fig.

It was argued in Ref. 24 that the choice of boundary con-1(a)] takes place for big values of the phenomenological con-
ditions of the order parameter has no strong effect on thetantsh, 5. It leads to the final state in which only one com-
growth of the superconducting structure provided the superponent of the field ) is ordered. In the second case both
conducting region is several coherence lengths away frorflelds coexist in the final state. These two states have a dif-
the boundary. Accounting for this, the superconductorferent topology of the physically observable vortex state.
vacuum interface is usually used to simulate the general To make the pictures detailed we present here the struc-
properties of superconducting systefhis:**In this case the  tures appearing in small numerical boxes having 64 cal-
order parameter must satisfy the conditiori¥ —A)#|,  culation cells[with the size of the cell corresponding to a
=0, which assures zero current through the superconductophysical length equal t@&(0)/2]. These calculations were
vacuum interface. tested numerically for differensystem sizegfrom 128

At sufficiently high fieldsHe,, the value ofA at the  x128 up to 51X 512 unit cells in a square geometrgs
boundary(which is proportional to the size of the system well as for arectangularcross sectioriwith 128X 256 nu-
can become very large, causing an instability of the numerimerical cell3. All these simulations lead to the same topol-
cal procedure. This difficulty is usually bypassed by usingogy of the vortex structures and to very close quantitative
the so-called link variable approach: the order parameter igesults for the averaged parameters used below for the nu-
defined at the nodes of a rectangular mesh, while at the linksnerical identification of the states.

a link variableU , =exf —ifA,du] is used, withu=x or A small magnetic field does not produce any vortex in the
w=Yy depending on the direction of the link. This approachsystem. So if we are probing the field range below the lower
was described in detail in different papeeee, e.g., Refs. critical field, the trial order parametey; # 0 is slightly sup-
21-24. It can be directly extended to the system with aniso-pressed by the field only in the vicinity of the boundary. At a
tropic pairing, and we use it here for calculations withouthigher field some magnetic flux goes inside the system in the
further modifications. form of vortices.

As is seen from Figs. (&) and Xb), an initial process of
field penetration into the system is qualitatively the same in
both phases. One can note the usual cylindrical vortices pen-

It was found that the phase diagram for the system withetrating across the planar boundaries and avoiding the angles
anisotropic pairing placed into an external magnetic field carof the square. It coincides, as a matter of fact, with the same
be more complicated than was expected from treating theicture for a traditional superconductor with ordinary
mean field. The main new feature is the possibility of apairing?!~2

Ill. NUMERICAL SIMULATION
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FIG. 2. Typical intermediate stage of the ki-
netic scenario containing solitary vortex pairs as
well as some fragments of the chains. The distri-
bution of the order parameter is shown by the
gray-scale map accompanied by the contour
lines.

The difference appears in an intermediate stage of th&on coincides with the same for traditional superconductors
process. The magnetic flux inside the system causes a stromgth ordinary pairing.
reconstruction of the state. It suppresses the initially ordered
field », and produces islands of a growing second figid
The inequality ,> 75 transforms into the inverse relation V. RESULTS AND DISCUSSION
71<173.

The main distinction between the two scenariasand
(b) is directly visible from this step of the process. For big
values of the phenomenological constamsg, the impact to

the energy from islands of the new state wigkw 0 is found It is seen from Fig. (a) that at soméquite big phenom-

to be so strong as to suppress another figld=0 com- . . :
pletely. In the other case both fields coexist in the final stateemlog'calI constantb, 5 the islands of a new ordered field

. . . . completely overcome the old field,. The resulting structure
but the inverse inequalityy; < 3 conserves. It is expected P y igh g

(and seen directly from the figures and numerical d#tiat has only one ordered fields. The magnetic flux here is
y e 19 locked into the standard vortex lattice. It was proved by the
these two states have a different topology of the vortex state

A direct relation exists between the coexistence of the fieldg;;gléiaé}ot%gog O%lﬁée;?e,rgie\/fgﬁnn;isngf firgmsé?tf?;’ n\(ljvsh?c? ;he
71370 and the vortex flux structure. It was found that to 9

describe quantitatively the phase diagram plotted in th regular hexagonal symmetry which is well known for tradi-

b. - H) space. it is enouah to calculate the order arameter%onal superconductors. In fact, in spite of the intermediate
(bz,g:H) space, it ug u P Rinetics, this phase coincides with the mean-field
(m1) and(73) averaged over the systeth.

S . o rediction®>®
For a strong magnetic field many vortices go inside thep edictio

. i Let us concentrate now on the second scenario. In this
system. It SUppresses both ordere_d fields in average. At &se the nonlocal enerdgaused by the magnetic field and
very high external field a state with a so-called “surface

o 20-23 . the surface tension of the vortigegrevails over the local
f‘ugfrcc?n&uctl\;gyr aprpen«’:]l t. , Irn tht'rs r?t?te botk; com dp(i)r; i nisotropy impact. The islands of the new ordered fieid
the S ot meA? erpaﬁl tﬁ ein? € ‘:’f? rgyr?iup'?r esse d SI%nnot suppress the old one completely. In the final state two
€ system. As a resull, 1 N 2 pe;c S. aniso @m_use components of the order parameters coexist. Both fields hold
from the quartic terms—3b,S5—3b3S5 in the functional

b iaible | : ith th __the vortices containing the magnetic flux. Due to mutual re-
(3)] becomes negligible in comparison with the magnetic-y ;iqjon " these vortices tend to form a hexagonal lattice.

field energy(which is balanced by the second-order termsygvever, the magnitudes of the fields and 75 are differ-
[32;(VS)?+3°]/|S |5 in the free energy In this state ent. The vortices are different, too. It produces a specific
the magnetic field strongly dominates over the anisotropy ainstability in the vortex lattice. The vortices of two different
all values of the parametels ; and the resulting configura- kinds form the pairs.

The purpose of this study is to account for the competition
between the magnetic field and the effect of the anisotropy to
plot a phase diagram in the spads, ¢,H) which compares
the impacts from the corresponding energies.
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These are not the usual vortex-antivortex pairs. The vorvortices are different. The main repulsion between the vorti-
tices of both kinds have the same direction of magnetic fluxces is already “screened” in a state close to the hexagonal
This structure is obtained in the frame of self-consistent nulattice. So one can treat the distinction between the mean
merical simulation and in this sense it can be treated as @alue of the field and magnetic fluxes of larger and smaller
result of numerical experiment. However, it is interesting tovortices as effectively “positive” and “negative.” These ef-
discuss briefly a qualitative reason for this structure. fective vortices are confined with two different kinds of real

The averaged level of the magnetic field inside the systemortices and this causes a small attraction between them.
is determined by an integral flux of the vortices. But theThis attraction is found numerically to be enough to produce
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the above instability. systemd? This stage exists for quite a long tim@nuch

The screened vortices behave as effective “Coulombonger than the previous stageand in the presence of pin-
charges” producing “dipolar pairs.” Further, these pairs in- ning it can be frozen as a stablso-called “virtual”?>=%)
teract as dipoles and form typical “dipolar chain®"3 It phase. In the other case the ordering is continuous and the
was found recently that such chains are attracting intermeddipolar pairs orientate into parallel lines. A typical interme-
ate configurations for kinetic scenarios in different physicaldiate stage of the scenario described is presented in Fig. 2.

1.2
Surface superconductivity
0.9 .
Mixed state
("dipolar chains")
0.6
o . FIG. 5. Phase diagram in the spad® §;H).
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Here the distribution of the order parameter is shown by théunctions from the external magnetic fieldisat fixed values
gray-scale map accompanied by contour lines. Solitary voref the phenomenological constants. To do this, we start from
tex pairs as well as some fragments of the chains alreadhe same initial conditionsy; #0 and 7, 3 ,~=0 and repeat

presented in the system at the presented moment can be sef@ above kinetic procedure during<20® time units at dif-
directly. . . o _ ferent values oH. The resulting field dependences of the
From a physical point of view it is the maimew feature  componentg7,) and(73) at intermediate values of the con-
of the systemAt some relation between parameters the sustantsh, ;= —0.2 are shown in Fig. 4 as an example.
perconductor with anisotropic pairing placed into an external The same procedure can be repeated now for different
magnetic f|eld_can fornwo kinds of vorticegontaining dif-  constants from the physically interesting intervall.2
ferent magnetic fluxes. The flux associated with each vortex b, s<0.0. It reproduces the corresponding dependences of
deviates from the standard flux quantgamd is not equal to the éomponent$n1) and(7s) at any given external fielt.

two or more quanta . :
: - L o . In the inset to Fig. 4 we plot an example of such depen-
This deviation exists in traditional superconductors also. 9 P P P

It has been observed recently in a mesoscopic superco%igigsaiblc;;ﬁz'eg 2?Ig]lgsgﬁa?nﬁg';na:?ethiitpeha?sn(gﬂgzrg
ductor where thgsmal) total number of vortex cores al- 9 P q P )

lowed to enter the interior of the superconductor can be di- Combllnmg both types of dependen.ces one can restore the
rectly compared with discretébut nonequidistaptenergy ~Phase diagram physically expected in the spags(H).
levels®® In particular, it was found for a given number of This diagram is presented in Fig. 5. Let us note once more
vortices that the energy level is split due to different possibldhat this phase diagram is a part of more complicated dia-
symmetries of the vortex configuration. It corresponds to gram. Generally speaking, it should be placed in at least a
different total magnetic flux accumulated in the system withthree-dimensional phase spad®, (b3;H). One has to ac-
a noninteger number of magnetic flux quanta. In novel sucount for both signs of the constariig; also. It costs more
perconductors with anisotropic pairing this effect is accom-computer time and this study is to be continued.
panied(and, as is seen from numerical simulation, can be To summarize let us note that magnetic-field penetration
enforced by the interaction between the components. Itto the superconductors with a multicomponent order param-
leads to the splitting between two kinds of vortices. eter can cause new types of ordering. At some relation be-
Let us define now integral parameters convenient to detween parameters this ordered state can comvankinds of
scribe a phase diagram of the system numerically. One cajorticeswith a different(noninteger value of the magnetic
note that after some transient process the averaged paramx.
eters(n, ») tend to stationary fixed values. Numerically this |t should be noted once more that this deviation is caused
process of ordering of the fieldg, , can be controlled by the by two reasons: the interaction between order parameter
calculation of the averaged time derivative®n,/dt) and  components and the interaction between vortices. Obviously,
(dmslat) presented in Figs.(d) and 3b), respectively®® an isolated vortex carrying a noninteger flux quantum cannot
At the beginning of the curves the separate maxima of thexist. However, it does not mean directly, that these vortices
derivatives are seen. These maxima correspond to a strorgways form pairs. In fact, we cannot observe an isolated
reordering of the system. It happens when fiste or twQ  pair. The structure found here is a collective effect and the
layers of magnetic vortices penetrate simultaneously into theortices in the pair cannot be separated at distances larger
system across all symmetric boundaries. At later times of thenan the London penetration depth, when their magnetic
process the magnetic flux in the system does not grow sfluxes become really isolated. Strictly speaking, the state-
quickly. This is reflected in the decrease of both derivativesment about “noninteger flux” in this case means not more
(dmy/at) and(dnsz/at). The time interval shown in the plots than that the structures of the order parameter and magnetic
corresponds to 2 10° time units (given by the inverse re- field in the vortex do not coincide with the structures for a
laxation constant$y=1/"=1). At the end of this interval “standard” isolated vortex in a traditional superconductor.

the dimensionless derivativég»,/dt) and(dn;/dt) go to Numerical simulation of the process reproduces these new
values comparable with the intensity of the no{gg(r,t)) structures with two kinds of vortices at different internal pa-
=0 and(&;(r,t) & (r',t))= 0y d(r—r")o(t—t"). rameters of the system. It gives a phase diagram of the sys-

This gives an estimation of the time sufficient to finish thetem in a wide range of external magnetic field. Additional
ordering kinetics and reach a stationary state. One can provearrangement of the structure due to an effective dipolar
that this time interval is sufficient at different values of the interaction lowers the symmetry of the vortex lattice down
phenomenological parameters and the external fitldflo  from an ordinary(hexagonal or tetragonabne. This study
compare, the time dependences of the averaged order paraoan be applied to an experimental search for new structures
eter componentéz;) and( 73) corresponding to the kinetic in the “heavy fermion” superconductofsin which multi-
scenarios shown in Fig. 1 are presented in the inset to Figgomponent order parameters have been experimentally iden-
3(a) and 3b), respectively. tified, in particular, in the well-known URt(see Ref. 7 and

We use the above estimation for further calculations ofreferences therejin
the averaged stationary parameters as well as to plot physi- The different vortices can be manifest in a specific corre-
cally the expected phase diagram. As was mentioned alation function for the magnetic-field density reproduced by
ready, in spite of the qualitative differences between the twahe nontrivial positions and form factor of the peaks of
possible ordered states in the system, it can be characteriz&RANS. The lattice of vortices as well as the absence of six-
integrally by means of the averaged order parameter compdeld axes and general anisotropy of the peaks were observed
nents(#,) and(#n3). First let us calculate these values asby the SANS technique in different superconducting
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compoundg®-3!Unfortunately, a lot of the properties of the

vortex lattice shadow the effects coming from anisotropic

pairing in real experiments. A complicated variety of influ-
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