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Magnetic-field penetration and structure of the mixed state in a superconductor
with a multicomponent order parameter

A. S. Zeltser, Yu. G. Pashkevich, and A. E. Filippov
A. A. Galkin, Donetsk Phystech of National Academy of Sciences of Ukraine, 83114 Donetsk, Ukraine

~Received 26 April 1999; revised manuscript received 5 April 2000!

Magnetic-field penetration in superconductors with a multicomponent order parameter is discussed. Numeri-
cal simulation of the process is performed for a wide range of the external magnetic field and internal
parameters of the system. It is found that the kinetic process of the vortex penetration regularly produces
domain boundaries separating phases with different realizations of the equilibrium order parameter. As a result
a new~mixed! vortex state can appear. It contains two different types of vortices connected to pairs and chains
by the surface domain energy. The lattice formed by such vortices has a symmetry lower than hexagonal or
tetragonal ones.
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I. INTRODUCTION

The nontrivial localized structures in superconduct
with multicomponent pairing as well as superfluid3He have
been actively studied recently. The ordering kinetics and
pology of nonlinear excitations in these systems have m
common features.1–6 In particular, the multicomponent na
ture and anisotropy produces a solitary vortex of complica
structure7–11 and modifies the interaction betwee
vortices.12,13,6

The multicomponent nature of the order parameter in s
systems leads to phase domains with equivalent energies
different equilibrium realizations of the order parame
components. Within the domain boundaries the order par
eter has a complicated~lower! symmetry with all compo-
nents nonzero. It favors the generation of vortex excitati
inside the domain boundaries.6 These properties wer
predicted1 and reproduced recently for the ordering kinet
in numerical experiments.3,4,6

Vortices with a magnetic flux appearing at intermedia
stages of the kinetic scenario are anisotropic. The anisotr
can be generated by the crystal lattice anisotropy~in this case
it is reflected in rhombic terms in the gradient part of the fr
energy functional8–10! as well as being due to the multicom
ponent nature of the order parameter by itself.8,6

A more complicated picture appears in the presence o
external magnetic field. It was predicted from semianalyti
estimations that a different equilibrium configuration of t
order parameter zeros can generate different vortex latt
and produce phase transitions between these structures14 In
turn, the vortex anisotropy lowers the symmetry of the v
tex lattice down to a rhombic lattice.12,13 All recent theoret-
ical studies predict some deviations of the vortex lattice fr
the traditional triangular lattice.15–19

The deviation of the vortex lattice from the traditional o
is caused by the competition between the magnetic field
the effect of anisotropy. It takes place when the energy of
anisotropy is comparable to the magnetic energy. In this c
the variation of the order parameter and the magnetic fi
vector potential has to be accounted for self-consistently
frame of numerical simulation. In the present study we sh
that the above competition between energies can lead to
nontrivial vortex structures in these systems.

The goal of this paper is to present the results of a
PRB 620163-1829/2000/62~14!/9688~9!/$15.00
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merical simulation of the magnetic-field penetration into s
perconductors with anisotropic pairing. The simulation
based on the time-dependent Ginzburg-Landau mo
~TDGLM!. This model self-consistently takes into accou
all components of the order parameter and the magnetic-
vector potential. These equations give a rigorous descrip
of the system given the appropriate initial and bound
conditions.6,20

In particular, when the magnetic field penetrates into
uniformly ordered superconducting system the TDGLM
lows one to describe carefully both the kinetics of the pe
etration process and the resultant stationary structure.21–24 It
should be noted that some of these structures found do
coincide with a simple picture predicted from naive mea
field estimations. Sometimes the final distribution of the v
tices can be even the nonequilibrium state. Thus, it rep
sents a memory about ‘‘frozen’’ kinetics. Nevertheless, t
structure is determined by the penetration process, wh
normally appears in kinetics, and as such it must be trea
as a physical state and expected to be observed.25–27

Experimental information about real systems can be
tained from positions and structure~form factor! of the
maxima of the correlation function which is observed
small-angle neutron scattering~SANS! experiments on a vor-
tex lattice.28–32

II. TIME-DEPENDENT GINZBURG-LANDAU MODEL

A. Free energy

We apply the standard Ginsburg-Landau free ene
functional expanded over order parameter variablesh
5@hx ,hy#:

F5
1

2E ddr H ahh* 1
b1

2
~hh* !21

b2

2
uh•hu21b3~ uhxu4

1uhyu4!1K1Di* h j* Dih j1K2Di* h i* D jh j

1K3Di* h j* D jh i1KzDz* h j* Dzh j1g~“3A!2J . ~1!

These variables appear from an expansion of the an
9688 ©2000 The American Physical Society
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tropic superconducting gapD(k) over functionsF j (k) be-
longing to one of the irreducible representations of the cr
tal point groupD(k)5Sh jF j (k). This expansion creates
vector order parameter with complex coefficientshx5h1
1 ih2 and hy5h31 ih4. Here, the following notation is
used: a5a(T2Tc), Di5] i2 i gAi , j 5x,y; g51/8p, g
5e/phc; andA5(Ax ,Ay) is the vector potential.

Specific properties of particular systems are associa
with the phenomenological constantsa,b1 ,b2 ,b3, andK j .
The free energy functional and TDGLM equations can
derived from microscopics.5,20 The corresponding phenom
enological constants in the equations can be restored f
the microscopic parameters of the system. However, fro
phenomenological point of view only the magnetic stabili

K11K21K3.uK3u, K1.uK2u, K4.0

and positiveness of quadratic form

b11b21
b3

2
1minH b3

2
,2

b21ub2u
2 J .0,

restrict these constants.

B. TDGLM equations, and initial and boundary conditions

A set of coupled equations for the TDGLM has be
derived20 for the general case of superconductors of mixed
ands symmetry from the Gor’kov equations. It was applie
in particular, to study the structure of a solitary vortex in
superconductor with anisotropic pairing.11,10Here we use the
following representation for the TDGLM equations:

]h j

]t
52G

dF

dh j
1j j~r ,t !,

]A

]t
52GA

dF

dA
1jA~r ,t !, ~2!

whereG andGA are positive relaxation constants. Equatio
~2! describe the evolution of the order parameter compon
h j at the onlyd-wave pairing symmetry. Some addition
freedom comes here from the inclusion of random fluct
tions. All fields of the problem are supposed to fluctua
independently with Gaussian correlators^j j (r ,t)&50 and
^j j (r ,t)jk(r 8,t)&5d jkd(r2r 8)d(t2t8).

To study field penetration we solve Eqs.~2! at fixed initial
conditions. These conditions correspond to one of the u
formly ordered states. The possible states are determine
the given relations between the phenomenological consta
It is convenient to classify these states using the follow
cyclic variables:hy* hx5L2 iM andhx* hy5L1 iM , where

M5~hx* hy2hy* hx!/2i 5 iez~h3h* !/25@h1h42h2h3#,

L5~hx* hy1hy* hx!/25@h1h31h2h4#.

Introducing the order parameter densityS5(S1 ,S2 ,S3)
and the superconducting currentJ,
-
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S5hh* 5uhxu21uhyu2,

S15P5uhxu22uhyu2, S252M , S352L,

J5h1¹h22h2¹h11h3¹h42h4¹h32AuSu,

one can rewrite the free energy functional, Eq.~1!, in a more
convenient form:

F@S,J#5
1

2E ddr H F1

4
S j~¹Sj !

21J2G Y uSu2uSu1
1

2
S2

2
1

4
b2S2

22
1

4
b3S3

21g~¹3A!2J . ~3!

This functional generates a relatively compact system
TDGLM equations,

]h j

]t
5Dh j2~21! j~2A•¹hk1hk¹A!

2h j@A2211S#1b2M
]M

]h j
1b3L

]L

]h j
1j j~r ,t !,

]A

]t
5uA$2¹3(¹3A!1

1

k2
@~h1¹h22h2¹h1!

1~h3¹h42h4¹h3!2AuSu#1jA~r ,t !%, ~4!

which can be initially analyzed in terms of the reduced co
stants

b25
2b21b3

b11b21b3
,

b35
b3

b11b21b3

before numerical simulation. Here and below we use the
lowing reduced variables:

h j5h jAb11b21b3

a
,

uA5
GA

8paj2G
, j5AK1

a

as in previous articles.6 We suppose that the Ginzburg
Landau parameterk@1 ~as it is for novel superconductors!.
Besides, we limit ourselves by the approximation of sm
square anisotropyuK2u, uK3u!uK1u used in previous
studies.5,6 As seen from Eq.~3!, at uK2u, uK3u!uK1u the sym-
metry of the equilibrium uniform structure is completely d
termined by the factorsb2,3 at the invariantsM andL, respec-
tively.

Simple analysis gives the possible uniform structu
classified in Ref. 6. It is shown in Ref. 6 that some symme
transformations perform mutual permutations of the phy
cally equivalent phases. Due to this, we can restrict furt
numerical simulations by one of the phases~simplest for an
analysis and graphic presentation of the results!. It is seen
from the structure ofF@S,J# that the simplest configuration



s in the
r are
tate (
e.

9690 PRB 62A. S. ZELTSER, YU. G. PASHKEVICH, AND A. E. FILIPPOV
FIG. 1. Two typical kinetic scenarios of the penetration of a magnetic field which lead to the creation of two different final state
phase diagram@h3Þ0,h150 in ~a! andh3,1Þ0 in ~b!, respectively#. The densities of the different components of the order paramete
shown by gray-scale maps normalized to the difference between the maximum and minimum of each ordering field. The initial sh1

51,h2,3,450) is the same for both~a! and ~b! cases. The pictures at the left side correspond to some initial but already nonzero tim
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appears in equilibrium whenL→0 andM→0 at b3,0 and
b2,0 ~it corresponds to phase II in Ref. 6!. In this phase two
kinds of equilibrium domains are possible. The equilibriu
values of the order parameterh5@hx ,hy# in the domains
are given by the relationsh5@hx ,0#, wherehxÞ0 andh
5@0,hy#, hyÞ0, respectively. At the same time the valu
M andL are not equal to zero only inside the domain wa
So, as the initial condition for a uniform state one can ta
simply uhxu5h151,h2,3,450 ~or alternatively uhyu5h3
51,h1,2,450).

For definiteness~to reduce the number of possible comb
nations of the parameters! we restrict the present study by th
subspaceb35b2,0. This choice in particular can be sup
ported by the results of a renormalization-group study of
problem.6 This study shows that the effective renormaliz
parametersb3 andb2 are attracted to the vicinity of the lin
b35b2 in sectorb3,0,b2,0. It corresponds tob2→0. Nu-
merical simulations for other negativeb3 and b2(b2Þ0)
give qualitatively the same results.

The boundary conditions forA are given by the require
ment that the magnetic field at the external surfaces of
sample,B5¹3A, must be equal toHext. Here the magnetic
field is measured in units of the upper critical fieldHc2
5f0/2pj2 and the vector potentialA in units of Hc2j(0),
respectively. Let us note also that we consider a tw
dimensional problem, i.e., cylindrical geometry with a squ
cross section. This means that the sample is assumed
infinite in thez direction and all derivatives along this dire
tion can be neglected.21,33,34 For definiteness all numerica
procedures were done where the value of the Ginzbu
Landau parameter is chosen to bek520; i.e., we consider a
strongly pronounced type-II superconductor.

It was argued in Ref. 24 that the choice of boundary c
ditions of the order parameter has no strong effect on
growth of the superconducting structure provided the sup
conducting region is several coherence lengths away f
the boundary. Accounting for this, the superconduct
vacuum interface is usually used to simulate the gen
properties of superconducting systems.21–24,34In this case the
order parameter must satisfy the condition (2 i¹2A)hun
50, which assures zero current through the superconduc
vacuum interface.

At sufficiently high fieldsHext, the value ofA at the
boundary~which is proportional to the size of the system!
can become very large, causing an instability of the num
cal procedure. This difficulty is usually bypassed by us
the so-called link variable approach: the order paramete
defined at the nodes of a rectangular mesh, while at the li
a link variableUm5exp@2i*Amdm# is used, withm5x or
m5y depending on the direction of the link. This approa
was described in detail in different papers~see, e.g., Refs
21–24!. It can be directly extended to the system with anis
tropic pairing, and we use it here for calculations witho
further modifications.

III. NUMERICAL SIMULATION

It was found that the phase diagram for the system w
anisotropic pairing placed into an external magnetic field
be more complicated than was expected from treating
mean field. The main new feature is the possibility of
.
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stable mixed state. In this state the superconducting o
parameterS5hh* 5uhxu21uhyu2 has two sets of minima
~vortices! with different magnitudes of theS density and, as
a result, with different magnetic fluxes inside the vortices

The results of numerical simulations are summarized
Figs. 1–5. Let us discuss first of all qualitatively the kine
scenario and resulting structures expected. For this goal
convenient to use the order parameter compone
h1 , . . . ,h4 instead of the physically measured value of t
magnetic flux. These components were used already fo
mean-field description. In these terms the newly found mix
state contains two ordered componentsh5@h1 ,0,h3 ,0#
with different h1Þh3, but nonzero magnitudes~in contrast
to the mean field predicting one ordered component in se
b3,0 andb2,0).

The mean-field approximation is valid for a uniform
ordered system only. Penetration of the magnetic field p
duces a nonuniform distribution of the order parameter.
pecially it is essential in the vicinity of the vortices where t
magnitude of one of the components of the order param
turns to zero. In this region the nonzero value for anot
component~which was suppressed in the uniform state! is
found to be more preferable. It grows and suppresses o
fields of the problem in some neighborhood. Below we co
centrate on kinetic scenarios for the particular initial con
tions h1Þ0,h2 ,3,450.

Two typical kinetic scenarios of the field penetration
the magnetic field for two different states in a phase diagr
are presented in Figs. 1~a! and 1~b!, respectively. The densi
ties are shown by gray-scale maps normalized at every t
moment into a difference between the maximum and m
mum of each ordering field. The first scenario@shown in Fig.
1~a!# takes place for big values of the phenomenological c
stantsb2,3. It leads to the final state in which only one com
ponent of the field (h3) is ordered. In the second case bo
fields coexist in the final state. These two states have a
ferent topology of the physically observable vortex state.

To make the pictures detailed we present here the st
tures appearing in small numerical boxes having 64364 cal-
culation cells@with the size of the cell corresponding to
physical length equal toj(0)/2#. These calculations were
tested numerically for differentsystem sizes~from 128
3128 up to 5123512 unit cells in a square geometry! as
well as for arectangularcross section~with 1283256 nu-
merical cells!. All these simulations lead to the same topo
ogy of the vortex structures and to very close quantitat
results for the averaged parameters used below for the
merical identification of the states.

A small magnetic field does not produce any vortex in t
system. So if we are probing the field range below the low
critical field, the trial order parameterh1Þ0 is slightly sup-
pressed by the field only in the vicinity of the boundary. At
higher field some magnetic flux goes inside the system in
form of vortices.

As is seen from Figs. 1~a! and 1~b!, an initial process of
field penetration into the system is qualitatively the same
both phases. One can note the usual cylindrical vortices p
etrating across the planar boundaries and avoiding the an
of the square. It coincides, as a matter of fact, with the sa
picture for a traditional superconductor with ordina
pairing.21–23
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FIG. 2. Typical intermediate stage of the k
netic scenario containing solitary vortex pairs
well as some fragments of the chains. The dist
bution of the order parameter is shown by th
gray-scale map accompanied by the conto
lines.
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The difference appears in an intermediate stage of
process. The magnetic flux inside the system causes a s
reconstruction of the state. It suppresses the initially orde
field h1 and produces islands of a growing second fieldh3.
The inequalityh1.h3 transforms into the inverse relatio
h1,h3.

The main distinction between the two scenarios~a! and
~b! is directly visible from this step of the process. For b
values of the phenomenological constantsb2,3, the impact to
the energy from islands of the new state withh3Þ0 is found
to be so strong as to suppress another fieldh1Þ0 com-
pletely. In the other case both fields coexist in the final st
but the inverse inequalityh1,h3 conserves. It is expecte
~and seen directly from the figures and numerical data! that
these two states have a different topology of the vortex st
A direct relation exists between the coexistence of the fie
h1,3Þ0 and the vortex flux structure. It was found that
describe quantitatively the phase diagram plotted in
(b2,3;H) space, it is enough to calculate the order parame
^h1& and ^h3& averaged over the system.35

For a strong magnetic field many vortices go inside
system. It suppresses both ordered fields in average.
very high external field a state with a so-called ‘‘surfa
superconductivity’’ appears.21–23 In this state both compo
nents of the order parameter are strongly suppressed in
the system. As a result, the impact from anisotropy@caused
from the quartic terms2 1

4 b2S2
22 1

4 b3S3
2 in the functional

~3!# becomes negligible in comparison with the magne
field energy„which is balanced by the second-order ter

@ 1
4 S j (¹Sj )

21J2#/uSu2uSu in the free energy…. In this state
the magnetic field strongly dominates over the anisotrop
all values of the parametersb2,3 and the resulting configura
e
ng
d

e,

e.
s

e
rs

e
a

ide

-
s

at

tion coincides with the same for traditional superconduct
with ordinary pairing.

IV. RESULTS AND DISCUSSION

The purpose of this study is to account for the competit
between the magnetic field and the effect of the anisotrop
plot a phase diagram in the space (b2,3,H) which compares
the impacts from the corresponding energies.

It is seen from Fig. 1~a! that at some~quite big! phenom-
enological constantsb2,3 the islands of a new ordered fiel
completely overcome the old fieldh1. The resulting structure
has only one ordered fieldh3. The magnetic flux here is
locked into the standard vortex lattice. It was proved by
simulation~for quite large volumes of the system, when t
effect of the boundaries becomes negligible! that it tends to a
regular hexagonal symmetry which is well known for trad
tional superconductors. In fact, in spite of the intermedi
kinetics, this phase coincides with the mean-fie
prediction.5,6

Let us concentrate now on the second scenario. In
case the nonlocal energy~caused by the magnetic field an
the surface tension of the vortices! prevails over the local
anisotropy impact. The islands of the new ordered fieldh3
cannot suppress the old one completely. In the final state
components of the order parameters coexist. Both fields h
the vortices containing the magnetic flux. Due to mutual
pulsion, these vortices tend to form a hexagonal latti
However, the magnitudes of the fieldsh2 andh3 are differ-
ent. The vortices are different, too. It produces a spec
instability in the vortex lattice. The vortices of two differen
kinds form the pairs.
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FIG. 3. Time dependences of the a
eraged time derivativeŝ]h1 /]t& and
^]h3 /]t& corresponding to the kinetic
scenarios~a! and ~b! shown in Fig. 1.
The time dependences of the averag
order parameter components^h1& and
^h3&. Here and further squares an
circles are connected toh1 and h3 pa-
rameters, respectively.
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These are not the usual vortex-antivortex pairs. The v
tices of both kinds have the same direction of magnetic fl
This structure is obtained in the frame of self-consistent
merical simulation and in this sense it can be treated a
result of numerical experiment. However, it is interesting
discuss briefly a qualitative reason for this structure.

The averaged level of the magnetic field inside the sys
is determined by an integral flux of the vortices. But t
r-
.
-
a

m

vortices are different. The main repulsion between the vo
ces is already ‘‘screened’’ in a state close to the hexago
lattice. So one can treat the distinction between the m
value of the field and magnetic fluxes of larger and sma
vortices as effectively ‘‘positive’’ and ‘‘negative.’’ These ef
fective vortices are confined with two different kinds of re
vortices and this causes a small attraction between th
This attraction is found numerically to be enough to produ
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FIG. 4. Typical dependences of the averag
order parameter components^h1& and^h3& from
the external magnetic fieldH at fixed values of
the phenomenological constants. In the inset
dependences of the averaged order param
componentŝ h1& and ^h3& from the values of
phenomenological constants at fixed extern
magnetic fieldH are shown.
m
n-

ed
ca

-

the
e-
. 2.
the above instability.
The screened vortices behave as effective ‘‘Coulo

charges’’ producing ‘‘dipolar pairs.’’ Further, these pairs i
teract as dipoles and form typical ‘‘dipolar chains.’’36–39 It
was found recently that such chains are attracting interm
ate configurations for kinetic scenarios in different physi
b

i-
l

systems.40 This stage exists for quite a long time~much
longer than the previous stages! and in the presence of pin
ning it can be frozen as a stable~so-called ‘‘virtual’’25–27!
phase. In the other case the ordering is continuous and
dipolar pairs orientate into parallel lines. A typical interm
diate stage of the scenario described is presented in Fig
FIG. 5. Phase diagram in the space (b2,3;H).
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Here the distribution of the order parameter is shown by
gray-scale map accompanied by contour lines. Solitary v
tex pairs as well as some fragments of the chains alre
presented in the system at the presented moment can be
directly.

From a physical point of view it is the mainnew feature
of the system. At some relation between parameters the
perconductor with anisotropic pairing placed into an exter
magnetic field can formtwo kinds of vorticescontaining dif-
ferent magnetic fluxes. The flux associated with each vo
deviates from the standard flux quantum~and is not equal to
two or more quanta!.

This deviation exists in traditional superconductors al
It has been observed recently in a mesoscopic super
ductor where the~small! total number of vortex cores al
lowed to enter the interior of the superconductor can be
rectly compared with discrete~but nonequidistant! energy
levels.41 In particular, it was found for a given number o
vortices that the energy level is split due to different possi
symmetries of the vortex configuration. It corresponds t
different total magnetic flux accumulated in the system w
a noninteger number of magnetic flux quanta. In novel
perconductors with anisotropic pairing this effect is acco
panied~and, as is seen from numerical simulation, can
enforced! by the interaction between the components.
leads to the splitting between two kinds of vortices.

Let us define now integral parameters convenient to
scribe a phase diagram of the system numerically. One
note that after some transient process the averaged pa
eters^h1,2& tend to stationary fixed values. Numerically th
process of ordering of the fieldsh1,2 can be controlled by the
calculation of the averaged time derivatives^]h1 /]t& and
^]h3 /]t& presented in Figs. 3~a! and 3~b!, respectively.35

At the beginning of the curves the separate maxima of
derivatives are seen. These maxima correspond to a st
reordering of the system. It happens when first~one or two!
layers of magnetic vortices penetrate simultaneously into
system across all symmetric boundaries. At later times of
process the magnetic flux in the system does not grow
quickly. This is reflected in the decrease of both derivativ
^]h1 /]t& and^]h3 /]t&. The time interval shown in the plot
corresponds to 23103 time units ~given by the inverse re
laxation constantst0.1/G[1). At the end of this interval
the dimensionless derivatives^]h1 /]t& and ^]h3 /]t& go to
values comparable with the intensity of the noise^j j (r ,t)&
50 and^j j (r ,t)jk(r 8,t)&5d jkd(r2r 8)d(t2t8).

This gives an estimation of the time sufficient to finish t
ordering kinetics and reach a stationary state. One can p
that this time interval is sufficient at different values of t
phenomenological parameters and the external fieldH. To
compare, the time dependences of the averaged order pa
eter componentŝh1& and^h3& corresponding to the kinetic
scenarios shown in Fig. 1 are presented in the inset to F
3~a! and 3~b!, respectively.

We use the above estimation for further calculations
the averaged stationary parameters as well as to plot ph
cally the expected phase diagram. As was mentioned
ready, in spite of the qualitative differences between the
possible ordered states in the system, it can be characte
integrally by means of the averaged order parameter com
nents^h1& and ^h3&. First let us calculate these values
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functions from the external magnetic fieldsH at fixed values
of the phenomenological constants. To do this, we start fr
the same initial conditionsh1Þ0 andh2,3,450 and repeat
the above kinetic procedure during 23103 time units at dif-
ferent values ofH. The resulting field dependences of th
componentŝh1& and^h3& at intermediate values of the con
stantsb2,3520.2 are shown in Fig. 4 as an example.

The same procedure can be repeated now for diffe
constants from the physically interesting interval21.2
<b2,3<0.0. It reproduces the corresponding dependence
the componentŝh1& and^h3& at any given external fieldH.
In the inset to Fig. 4 we plot an example of such depe
dences atH50.2. It belongs to a region in the phase diagra
where all changes of the parameters are quite pronounc

Combining both types of dependences one can restore
phase diagram physically expected in the space (b2,3;H).
This diagram is presented in Fig. 5. Let us note once m
that this phase diagram is a part of more complicated d
gram. Generally speaking, it should be placed in at lea
three-dimensional phase space (b2 ,b3 ;H). One has to ac-
count for both signs of the constantsb2,3 also. It costs more
computer time and this study is to be continued.

To summarize let us note that magnetic-field penetrat
to the superconductors with a multicomponent order para
eter can cause new types of ordering. At some relation
tween parameters this ordered state can containtwo kinds of
vorticeswith a different~noninteger! value of the magnetic
flux.

It should be noted once more that this deviation is cau
by two reasons: the interaction between order param
components and the interaction between vortices. Obviou
an isolated vortex carrying a noninteger flux quantum can
exist. However, it does not mean directly, that these vorti
always form pairs. In fact, we cannot observe an isola
pair. The structure found here is a collective effect and
vortices in the pair cannot be separated at distances la
than the London penetration depth, when their magn
fluxes become really isolated. Strictly speaking, the sta
ment about ‘‘noninteger flux’’ in this case means not mo
than that the structures of the order parameter and magn
field in the vortex do not coincide with the structures for
‘‘standard’’ isolated vortex in a traditional superconducto

Numerical simulation of the process reproduces these
structures with two kinds of vortices at different internal p
rameters of the system. It gives a phase diagram of the
tem in a wide range of external magnetic field. Addition
rearrangement of the structure due to an effective dipo
interaction lowers the symmetry of the vortex lattice dow
from an ordinary~hexagonal or tetragonal! one. This study
can be applied to an experimental search for new struct
in the ‘‘heavy fermion’’ superconductors,6 in which multi-
component order parameters have been experimentally i
tified, in particular, in the well-known UPt3 ~see Ref. 7 and
references therein!.

The different vortices can be manifest in a specific cor
lation function for the magnetic-field density reproduced
the nontrivial positions and form factor of the peaks
SANS. The lattice of vortices as well as the absence of s
fold axes and general anisotropy of the peaks were obse
by the SANS technique in different superconducti
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compounds.28–31Unfortunately, a lot of the properties of th
vortex lattice shadow the effects coming from anisotro
pairing in real experiments. A complicated variety of infl
ences has to be excluded before resolution of the ques
about the role of unconventional pairing in the structu
found from SANS measurements.32
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