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Structural rearrangement of solid surfaces due to competing adsorbate-substrate interactions

E. V. Vakarin,1,* A. E. Filippov,1,† J. P. Badiali,1,‡ and M. F. Holovko2
1Structure et Re´activité des Syste`mes Interfaciaux, Universite´ Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cedex 05, Franc

2Institute for Condensed Matter Physics, Svientsitsky strasse 1, 290011, Lviv, Ukraine
~Received 8 October 1998!

Employing a generalized lattice gas theory and the Brownian dynamics simulation, we show that the
competing displacive interaction in an adsorbate may cause a continuous distortive transition in the underlying
substrate. The threshold for the transition is determined by the competition of the substrate rigidity and the
quasielastic energy induced by the adsorbate. In the presence of a strong pinning and repulsive lateral inter-
action, the resulting structure appears as a compromise between the square lattice of the substrate and the
hexagonal arrangement of the adsorbate. For hexagonal substrate lattices the simulation demonstrates that
various adsorbate structures~from honeycomb lattices to quasicrystalline pentagonal configurations! may be
observed, depending on the effective radii of interaction. Due to the long-ranged coupling the substrate may
acquire a substructure induced by the adsorbate. This paper represents a generalization of the work published
in Phys. Rev. Lett.81, 3904~1998!. @S1063-651X~99!01107-1#

PACS number~s!: 68.45.2v
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I. INTRODUCTION

Theoretical treatments of solid-liquid interfaces are tra
tionally based on the assumption that the solid side rem
unchanged under the influence of the adsorbate, while
latter is adjusted to a potential relief of the solid substr
@1,2#. This approximation is justified in most cases when
interaction between the substrate particles is much stro
than that between the adsorbates@3#. The ordering@4# and
interfacial rearrangement of adsorbates are mainly de
mined by the symmetry of the substrate. Various orientati
ally ordered structures may appear under the influence o
substrate-induced strain@5#.

Another situation takes place when the surface has s
latent instability due to the termination of the bulk crystalli
structure. Then the positions of the ideal termination do
correspond to a minimum of the surface free energy and
surface atoms tend to a new arrangement@6#. This is ob-
served for $100% and $110% surfaces of transition metal
which may reconstruct upon cooling or due to adsorption@7#.
The latter case represents the so-called adsorbate-induce
construction. The role of an adsorbate is to reduce the
face tension and, therefore, to stabilize one of the poss
lattice configurations provided by the substrate. A typi
example is the hydrogen-induced reconstruction of W$001%,
when the adsorption causes the substrate to prefer one of
equally available configurations@7,8#.

For realistic unreconstructed interfaces the adsorb
induced effects are not negligible. A surface may exh
stability or instability with respect to adsorption dependi
on the nature of the adsorbate. This is due to the fact tha
adsorbate-substrate bonding energy can be comparable
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even larger than, the cohesive energy of the substrate@9#. It
is demonstrated@10# that adsorption may lead to significan
lowering of the roughening temperature. Adsorption is
therms for surfaces with dynamically changing morpholo
exhibit nontrivial changes compared to the rigid substr
case @11#. Restructuring of metal surfaces under t
adsorbate-induced stress@12# is also well detected@13–15#.
These experiments have suggested that the stress is d
the charge redistribution at the interface. The surface st
contributes significantly to the elastic energy and can g
rise to a self-organization of mesoscopic structures at
interface. Recent experimental investigations@16# of adsorp-
tion at close packed surfaces have suggested that some
distortion of Au$111% surfaces should be assumed in order
interpret the diffraction patterns ofn-alkyl thiols. Similar
buckling and lateral shifts are detected@17# for Ru$001% in
the presence of adsorbed oxygen.

In our previous studies@18,19# we have suggested
mechanism for the distortion of dynamically changing su
strates affected by an adsorbate with strong lateral inte
tions. The latter tends to stabilize the hexagonal arrangem
of the overlayer~with increasing density or decreasing tem
perature!. The adsorbent-adsorbate interaction favors an
rangement compatible with the substrate symmetry. In
presence of a strong pinning of the adsorbate and the
strate displacive degrees of freedom, one may expect a
tortive rearrangement in the substrate@18# or even melting of
the substrate supplemented by a fragmentation of the ad
bate@19#. In this paper we present a more complete theo
ical account of this mechanism as well as Brownian dyna
ics ~BD! results which demonstrate that various structu
may result from the competing interactions at the interfa
We consider the solid-liquid interface, that is, the covera
depends on the thermodynamic conditions in the bulk liq
as well as on the displacements of the adsorbent. There
the adsorbate is not presumably ordered as in the case of
films. It should be noted that we do not specify any concr
system for which experimental information is availab
Nevertheless our theoretical analysis is applicable to a br
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PRE 60 661STRUCTURAL REARRANGEMENT OF SOLID SURFACES . . .
class of interfaces where all the interactions are of the s
order of magnitude. Of course, the next step should be ta
towards quantitative comparison of our results with expe
ments.

The paper is organized as follows. In Sec. II we spec
the analytical model. Then in Sec. III we calculate the fr
energy in the mean-field approximation and determine
order parameter. The results of the BD simulation are p
sented in Sec. IV. Section V contains our conclusion.

II. THE MODEL

We consider a liquid in contact with an adsorbing cryst
line substrate. The substrate is assumed to be stable, th
without the adsorbate it keeps a given crystalline configu
tion up to the melting temperature. The surface of the s
strate is represented by a square two-dimensional arra
atoms. Each atom holds an adsorbing site able to attrac
molecules of the liquid. The total number of the sites isNs
andS is the surface area. The lattice spacing and the effec
diameter of the liquid molecule are denoted asd and s,
respectively. The sites are assumed to have displacive
grees of freedom which are due to the elastic proper
~phononic excitations or anharmonicity effects! of the sub-
strate. In the absence of the adsorbate these displacem
represent the usual vibration of the solid atoms around
equilibrium positions$Ri

0%, such that the average distortio
^ui&5Ri2Ri

0 is zero. The Hamiltonian is

H5HS1HL1HSL , ~1!

where the contributions corresponding to the substrate an
the liquid are given by

HS5(
i j

USS~Ri ,Rj !, HL5(
a,b

ULL~ra ,rb!. ~2!

HereRi andra denote the positions of the substrate and
liquid particles, respectively. For the sake of simplicity w
assume that the motion of the substrate units in the direc
perpendicular to the surface is forbidden. Thus, the vec
corresponding to the solid part are two dimensional. The p
potentials for the solid and for the liquid are given by t
values ofUSS andULL . Note that theHS does not describe
the entire substrate side but only the part involved in
coupling with the liquid. The liquid is confined to a ha
space limited by the plane. The coupling term is defined
be the sum of pair potentials:

HSL5(
i ,a

USL~Ri ,ra!. ~3!

The Boltzmann factor formed by this potential can be writt
in terms of the Mayer functionsf SL(Ri ,ra) as
e
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expH 2b(
i ,a

USL~Ri ,ra!J
5)

i ,a
$11 f SL~Ri ,ra!%

5)
a

H 11(
i

f SL~Ri ,ra!

1
1

2! (
i j

f SL~Ri ,ra! f SL~Rj ,ra!1•••J . ~4!

We consider strongly attractive and saturable forces, so
we can assume that a given molecule of the liquid occupie
single site at the surface. The site is then ‘‘disabled’’ f
further adsorption. In this case we have

expH 2b(
i ,a

USL~Ri ,ra!J 5)
a

H 11(
i

f SL~Ri ,ra!J .

~5!

The Mayer function is chosen to be that of the sticky pote
tial @20–23#:

f SL~Ri ,ra!5ld~Ri2Ra!d~za2s/2!, ~6!

whereRa is the plane projection ofra , l is the stickiness
parameter,b51/kT, andza is the distance to the wall. This
potential states that a molecule can be adsorbed at the la
if its current position coincides with the position of a lattic
site.

Note that such a procedure is valid for a description of
chemisorption processes, but for the physisorbed syst
~like the noble gases on graphite! the contributions from all
lattice sites should be taken into account to give a pro
gas-solid potential@3#. It should be noted also that we ass
ciate a site with a substrate atom. This implicitly means t
we consider the on-top sites only. In order to account
other types~bridge or hollow! of adsorbing sites, it is neces
sary to introduce a relation between the displacement o
site and the displacement of a group of solid atoms.

III. FREE ENERGY

The partition function of our problem is

Z5
1

CS
E ~dRi !e

2bHS
1

CL
E ~dra!e2bHL

3)
a

H 11l(
i

d~Ri2Ra!d~za2s/2!J . ~7!

Here CL and CS are the normalization constants, (dAi)
5) i 51

Nk dAi , with Nk being the total number of molecules o
type k. Integration over the liquid positions gives the res
@20–23#
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662 PRE 60VAKARIN, FILIPPOV, BADIALI, AND HOLOVKO
Z5ZL
0 1

SNs
E ~dRi !e

2b( i , jUSS(Ri ,Rj )

3 (
n50

Ns ln

n! (
Rn

rn
0~R1 , . . . ,Rn!. ~8!

HereZL
0 is the partition function of the liquid near the ha

wall ~i.e., without the coupling!, rn
0(R1 , . . . ,Rn) is the

n-body distribution function for the same system, taken
the lattice positions. The result above is quite similar to t
obtained in Refs.@20–23# for lattices with fixed sites. The
only difference is that we have an additional integration o
the lattice positions. Therefore, we express
rn

0(R1 , . . . ,Rn) through the n-body correlation function
gn

0(R1 , . . . ,Rn),

rn
0~R1 , . . . ,Rn!5gn

0~R1 , . . . ,Rn!)
i 51

n

r1
0~s/2!

and use the Kirkwood superposition approximation:

gn
0~R1 , . . . ,Rn!5 )

i , j 51

n

g2
0~Ri ,Rj !.

After these rearrangements the partition function takes
form

J5
Z

ZL
0

5
1

SNs
E ~dRi !e

2b( i , jUSS(Ri ,Rj )

3 (
n50

Ns ~lr1
0!n

n!
e2b( i , jWLL(Ri ,Rj ), ~9!

where we have introduced the mean force potential for
liquid

2bWLL~Ri ,Rj !5 ln g2
0~Ri ,Rj !. ~10!

Notice that the summation overi , j for the mean force po-
tential is restricted toi , j 51,n. In order to avoid this incon-
venience we introduce the occupation numberst i @20–23#,

J5
1

SNs
E ~dRi !e

2b( i , jUSS(RiRj )

3(
t i

e2b( i , jWLL(RiRj )t i t j eb( im i t i ~11!

where the quantity

bm i5 ln@lr1
0~s/2!# ~12!

plays the role of the chemical potential for the adsorbate
fact, each pair of the solid sites interacts throughUSS poten-
tial plus an extraWLL contribution, if these sites have a pa
of adsorbed molecules. The presence of this additional in
action is determined by the set of occupation numbers.
partition function~11! describes a coupling of a translatio
ally invariant system~the substrate! with the adsorbate which
is not translationally invariant~at least on the same scale!.
t
t

r
e

e

e

n

r-
e

Even an ordered$m3n% overlayer differs in the periodicity
and the symmetry from the underlying lattice. In our case
adsorbate is not presumably ordered. Only at very high d
sities will the spherically symmetricWLL interaction favor a
solidlike hexagonal arrangement. Similar coupling betwe
the ‘‘spin’’ and elastic degrees of freedom was studied@24–
26# in context of magnetoelasticity effects. Nevertheless,
main focus of the above studies was on the influence of
elastic subsystem on the criticality of the Ising one. We d
cuss a ‘‘reverse’’ problem—an elastic subsystem~the sub-
strate! under the influence of the Ising-like counterpart~the
adsorbate!. In order to reduce our problem to that of a pu
solid with an effective Hamiltonian we should perform th
summation over all possible configurations$t i% of adsorbed
particles. We assume thatWLL(Ri ,Rj ) does not change the
sign at distances of order of the lattice spacingd, so that we
avoid frustration effects@27#. Then the summation over th
occupation numbers can be performed within the us
mean-field approximation~MFA! @1,18#,

WLL~Ri ,Rj !t i t j'WLL~Ri ,Rj !^t i&t j1WLL~Ri ,Rj !t i^t j&

2WLL~Ri ,Rj !^t i&^t j&

to give the result

J5
1

SNs
E ~dRi !e

2b/2( i , jUSS(Ri ,Rj )

3eb/2( i , jWLL(Ri ,Rj )Q iQ j

3)
i

@11eb(m i2( jWLL(Ri ,Rj )Q j )# , ~13!

whereQ i5^t i& is the average occupation number at the s
numbered i. This quantity should be determined se
consistently by the minimization of the free energy. The fa
tor 1/2 is introduced in order to avoid double counting.

To proceed further we extract the contribution corr
sponding to the reference state, i.e., the state with the s
located at the equilibrium positions.

USS~Ri ,Rj !5USS~Ri
0 ,Rj

0!1USS~ui ,uj !,

WLL~Ri ,Rj !5WLL~Ri
0 ,Rj

0!1WLL~ui ,uj !,

whereui5Ri2Ri
0 is the displacement vector. The partitio

function can be reduced to the form

J5e2bF0(Q)E ~dui !e
2b/2( i , jUSS(ui ,uj )

3eb/2( i , jWLL(ui ,uj )Q iQ j)
i

@11t i~Q!

3$e2b( jWLL(ui ,uj )Q j21%#, ~14!

whereF0(Q) andt i(Q) are given by

F0~Q!52
1

2 (
i j

WLL~Ri
0 ,Rj

0!Q iQ j1
1

b (
i

ln$12t i~Q!%,

~15!
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t i~Q!5
ebm i2b( jWLL(Ri

0 ,Rj
0)Q j

11ebm i2b( jWLL(Ri
0 ,Rj

0)Q j
. ~16!

In the absence of the displacement part the equations a
describe the free energy and adsorption isotherm for the r
substrate@Q i5t i(Q)#. In general,F0(Q) andt i(Q) are just
convenient notations, since the coverage should be ca
lated from the free energy which is determined from E
~14!.

A. Harmonic approximation

The displacement dependent contributions to the po
tials may be represented by their Taylor expansions aro
the equilibrium positions.

USS~ui ,uj !5VS~ui !1Di j ui•uj1•••, ~17!

WLL~ui ,uj !5VL~ui !1D i j ui•uj1•••, ~18!

whereDi j andD i j are the elastic matrices given by

Di j 5F]2USS~Ri ,Rj !

]Ri]Rj
G

R
i
0 ,R

j
0
, D i j 5F]2WLL~Ri ,Rj !

]Ri]Rj
G

R
i
0 ,R

j
0
.

~19!

Expansion~18! may contain a linear term which is droppe
assuming that the equilibrium positions of the substrate
tice are close to extrema ofWLL(ui ,uj ). For the substrate
lattice such a representation is quite natural because o
symmetry arguments@28#. For the liquid the mean force po
tential is an oscillating function, exponentially decayin
within a correlation length. Thus, the small displacement
ries may seem questionable in this case. But actually, we
interested in the liquid behavior in the neighborhood of
equilibrium positions of the lattice. If the long-range effec
are not prominent, then we may use the expansion abov

The one-particle potentials are

VS~ui !5VS
0~ui !1(

j
F]2USS~Ri ,Rj !

]Ri]Ri
G

R
i
0 ,R

j
0
ui

25aiui
2 ,

~20!

VL~ui !5(
j

F]2WLL~Ri ,Rj !

]Ri]Ri
G

R
i
0 ,R

j
0
ui

25a iui
2 , ~21!

whereVS
0(ui) is the substrate potential in the absence of

displacement correlations at the surface. In fact, this con
bution represents an impact from the solid bulk. In gene
the expansions given above may contain higher-order te
which account for a nonparabolicity of the one-particle p
tentials and the many-body interaction among the displa
ments. For the case of small displacements we can res
ourselves by the harmonic approximation. It is worth noti
that the force constantsai andDi j are positively defined due
to the thermodynamical stability of the solid side. In contra
the values ofa i andD i j are determined by the properties
the liquid within the range of distances comparable with
lattice spacingd. This means that the latter quantities may
ve
id

u-
.

n-
d

t-

he

-
re
e

.

e
i-
l,
s,
-
e-
ict

t,

e

positive or negative depending on the nature of the liq
and the thermodynamical conditions for the adsorption.

For instance, if theWLL(R) is the hard sphere mean forc
potential, then the curvature atR53s/2 is negative, its mag-
nitude increases with increasing density. Ifd53s/2 then a
pair of adsorbed molecules will tend to reduce@W(Ri

0 ,Rj
0)

,0# or to extend@W(Ri
0 ,Rj

0).0# the separation. Therefore
a negative curvature may take place when the adsorbate
differs from that of the substrate. For systems with spec
interactions the curvature is temperature dependent.

Within the harmonic approximation for the potentials t
partition function takes the form

J5e2bF0(Q)E ~dui !e
2b/2( i aiui

2

3e2b/2( i , jDi j ui•uje2bUSL(ui ,uj ), ~22!

where the displacement-dependent contributionUSL(ui ,uj )
is given by

USL52
1

2 (
i

a iui
2Q i

22
1

2 (
i j

D i j ui•ujQ iQ j

2
1

b (
i

ln@11t i~Q!$e2ba iui
2Q i

3e2b( jD i j ui•ujQ j21%#. ~23!

The logarithmic term results from the product in Eq.~14!.
Thus we see that, despite the harmonic approximation u
the displacement contribution of the liquid part is not ha
monic. This is due to the fact that the mean force potentia
not applied to all the surface sites simultaneously, but only
the adsorbed positions. One may expect some unbala
forces at the domain walls between the covered and unc
ered parts of the surface. These forces result in the anha
nicity and the many-body interaction given by the logarit
mic term which originates from the entropy associated w
different adsorbate configurations at fixed coverage. For
coverages the concentration of the domain walls vanis
and the logarithm and the exponential could be lineariz
Then the liquid contribution is harmonic,

USL5(
i

a iTii ~Q!ui
21(

i j
D i j Ti j ~Q!ui•uj , ~24!

whereTi j (Q) is given by

Ti j ~Q!5t i~Q!Q j2
1

2
Q iQ j . ~25!

At this level we have an effective harmonic Hamiltonia
with the dynamic matrix renormalized by the overlayer e
fects. For arbitrary coverages the potential should be take
it stands. Therefore, the complicated form of theUSL is the
price we have to pay for the transformation of the rand
adsorbate configurations into a translationally invariant
tential. In order to estimate possible effects of this poten
we first analyze the one-body term
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V15(
i

V~ui !5
1

2 (
i

aiui
22

1

2 (
i

a iui
2Q i

2

2
1

b (
i

ln@11t i~Q!$e2ba iui
2Q i21%#.

~26!

In Fig. 1 the value ofbV1 is plotted as a function of the
dimensionless displacement variableu5ui /d. It is seen that
the potential becomes flatter with increasing coverage. T
takes place for positive and for negativea i . The equilibrium
position u50 is unstable if we allow for a largeQ. This
suggests that the adsorbate causes a random hardenina i

.0) or softening (a i,0) of the substrate. The latter lose
stability when the fraction of distorted bonds achieves a c
tain value. A rough estimation of this fraction using the li
earization of Eq.~26! shows that the adsorbate part of t
potential is negative at 122Qt(Q).0 for positivea i and
122Qt(Q),0 for negative a i . Under the condition
t(Q)→1 we have a peculiarity forQ'1/2, which is consis-
tent with our previous estimation@19#.

This instability does not mean a limitation imposed onQ,
since the coverage is proportional to the stickiness param
l, which may be chosen arbitrary~at least, within the
model!. The instability results from the harmonic approxim
tion applied to the substrate. It is qualitatively similar to t
harmonic instability of the regular lattices@29#. The principal
difference of our case is that a new set of the equilibri
positions is not totally controlled by the symmetry of th
lattice. In fact, we have a competition between the squ
lattice of the substrate and the hexagonal arrangemen
which the adsorbate tends. To realize the meaning of
effect we have to include the anharmonicity of the substr
and the correlation between the displacements.

FIG. 1. The one-particle potentialbV1 ~harmonic approxima-
tion! as a function of the dimensionless displacementu. The curves
correspond toa50 ~bold solid!; a/a52,Q50.5 ~dashed!; a/a
522,Q50.2 ~dashed-dotted!; a/a522,Q50.4 ~solid!. All the
quantities are dimensionless~see text!.
is

(

r-

ter

re
to
is
te

B. Anharmonic effects and displacement correlation

There are two possible sources of anharmonic effe
These may come from the substrate side and/or from
adsorbate. The latter case reflects the existence of the
erential positions for the coverage. Actually these two fact
are in competition, since they are favored by the potential
different symmetries. In this paper we choose the simp
way and take into account only the substrate anharmonic
The effective one-body potential of the adsorbate is alre
anharmonic, but not at the level of the bare potentialWLL .
Despite some limitations, this approach suffices for our p
poses.

Suppose that the substrate one-particle potential cont
a fourth-order term, such that the resulting potential is

V15
1

2 (
i

aiui
22

1

2 (
i

a iui
2Q i

21(
i

g iui
4

2
1

b (
i

ln@11t i~Q!$e2ba iui
2Q i21%#. ~27!

The logarithmic term is conserved in the form found in t
preceding section. The coefficientg i is positive, thus, the
substrate potential is single welled. As is shown in Fig. 2,
adsorbate term transformsbV1 into a double- or even triple-
welled potential. Had we included the anharmonicity of t
adsorbate potential, we would observe multiple wells. T
suggests that the adsorbate drives the substrate to a s
new equilibrium positions. The number of new positions a
their location inside the initial unit cell depend on the natu
of the adsorbate~the sign and the magnitude ofa i) and also
on the coverage. Note that in the triple-welled case the s
strate equilibrium position remains accessible~although, less
stable!, but in the double-welled case it is unstable. In t
absence of the correlation between the cells, the substra
driven to a disordered configuration, since there is no p

FIG. 2. The one-particle potentialbV1 ~anharmonic approxima-
tion, g i5131023) as a function of the dimensionless displaceme
u. The curves correspond toa/a522,Q50.4 ~bold solid!; a/a
52,Q50.7 ~dashed-dotted!; a/a522,Q50.7 ~dashed!. All the
quantities are dimensionless~see text!.
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erence between the minima~at least between the deepe
ones!. Taking the correlations into account, we may exp
some ordering. Different tools are appropriate for this a
Depending on the geometry of the double-welled potent
the limiting cases of the displacive or the order-disorder
stabilities may be distinguished@30,31#. In the case of two
deep minima separated by a high barrier the problem ca
treated within the pseudospin formalism@29#, while for a
low barrier potential the soft mode concept is more app
priate. This allows us to predict which of two positions
actually realized in the presence of the correlation.

Unfortunately, it is difficult to apply these methods to o
problem, because the one-particle potential changes with
coverage. The latter should be determined self-consiste
from the free energy calculated with this potential. For t
reason we restrict ourselves by a range of the paramete
which the potential keeps the triple-welled shape~the bold
curve in Fig. 2!. If the barriers between the minima are low
we can approximate this potential by the square well.

V15H 2U0 , uui u,L/2

` otherwise, ~28!

whereU0 is the depth of the well andL is its width. The
cutoff distanceL corresponds to the flat bottom region of th
real anharmonic potential. In addition to the one-body pot
tial we consider the bilinear correlation term. It contains t
substrate contribution( i j Di j uiuj and the bilinear combina
tion ( i j Ti j (Q)D i j uiuj , extracted from theUSL . Now the
Ti j (Q) function has a more complicated form which reduc
to Eq. ~25! in the limit of low coverages. For simplicity we
assume the uniaxial anisotropy@31# along a virtual externa
field v i .

ui•uj5uiujcos~w i j !5H uiuj , w i j 50

2uiuj , w i j 56p ~29!

where w i j is the angle between two displacement vecto
Therefore eachui is a scalar confined between2L/2 and
L/2. Then our problem becomes quasi-one-dimensional, w
the partition function given by

J5e2bF0(Q)ebU0
1

LE2L/2

L/2

~dui !

3e2b( i , j [Di j 1Ti j (Q)D i j ]uiuje2b( iv i ui, ~30!

wherev i is a virtual displacement field introduced for co
venience in further calculations. Introducing the MFA for t
displacements, we get the free energy excess

bF5bF0~Q!2bU02
1

2 (
i , j

@Di j 1Ti j ~Q!D i j #^ui&^uj&

2(
i

ln I @^ui&#, ~31!

where
t
.
l,
-

be

-

he
tly
s

at

-
e

s

.

th

I @^ui&#5

sinhH v i1(
j

@Di j 1Ti j ~Q!D i j #^uj&J
H v i1(

j
@Di j 1Ti j ~Q!D i j #^uj&J . ~32!

Here we introduced the dimensionless quantities

v i→bv i

L

2
, ^ui&→^ui&

1

L
, Di j→bDi j S L

2D 2

,

D i j→bD i j S L

2D 2

.

Minimization of the free energy with respect to the avera
displacementŝui& gives the following self-consistent rela
tion:

^ui&52LFv i1(
j

@Di j 1Ti j ~Q!D i j #^uj&G , ~33!

where L(x)5coth(x)21/x is the Langevin function. It is
easy to verify that Eq.~33! agrees with the definition of̂ui&,

^ui&52
]bF

]v i
U

v i50

. ~34!

The second derivative gives the displacement correla
function

x i j 52
]2bF

]v i]v j
U

v i50

5
]^ui&
]v j

5^uiuj&2^ui&^uj&. ~35!

In general, Eq.~33! may have many solutions depending o
how many different interaction terms (Di j andD i j ) are taken
into account. For the simplest case of the nearest neigh
~NN! approximation we have

^u&52L@q„D1T~Q!D…^u&#, ~36!

x5^u2&2^u&25
S@q„D1T~Q!D…^u&#

12q„D1T~Q!D…S@q„D1T~Q!D…^u&#
,

~37!

where S@x#51/x221/sinh2(x) and q is the coordination
number of the lattice. The virtual fieldv is turned off. Equa-
tion ~36! has a nontrivial solution under the condition

q„D1T~Q!D…<23. ~38!

This equation represents an interplay between the ela
energies of the adsorbate and the substrate. For the sub
D is positively defined because of the thermodynamical s
bility, while D is negative for repulsive~NN! interactions.
This indicates that the set of$Ri

0% is close to the maxima o
WLL . Then the adsorbate tends to shift from$Ri

0% to mini-
mize the energy. If the coupling is strong, then the subst
is also involved in this motion. We deal with a distortiv
transition from the substrate-induced ordering (^ui&50) to
that induced by the adsorbate (^ui&Þ0). Within the square
well approximation~28! this effect is described as a loca
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666 PRE 60VAKARIN, FILIPPOV, BADIALI, AND HOLOVKO
‘‘polarization’’ of the adsorbate sites due to the quasi-elas
energy induced by the adsorbate. The threshold~38! is Q
dependent, so that for a givenD there exists some thresho
coverage which should be determined self-consisten
Minimizing the free energy with respect to the coverageQ
we get the following equation for the adsorption isotherm

Q2t~Q!52
EdW

Ed1W
Qt~Q!@12t~Q!#. ~39!

whereEd5(q/2)D^u&2 is the average distortion energy an
W5bqWLL(d) is the interaction energy at the equilibriu
positions. Equation~39! represents a difference of the cove
ages corresponding to the distorted (Q) and undistorted
@t(Q)# lattices. The difference is determined by an interp
between the distortion energyEd and the equilibrium cou-
pling W. If Ed50 we haveQ5t(Q), as it should be. Since
Ed is negative for nonzerôu&, the sign ofQ2t(Q) de-
pends on the sign ofW. Therefore,Q.t(Q) for W,0 and
Q,t(Q) for W.0. This difference increases with increa
ing distortion energy. If the undistorted lattice is totally co
ered @t(Q)→1#, then Q5t(Q). This suggests that th
strongest coupling is expected neart(Q)'1/2. Note, how-
ever, that we are restricted by theQ at which the square wel
approximation for the potential remains adequate. Theref
the applicability of Eq.~39! is limited.

The average displacement is plotted in Fig. 3 as a func
of D. It is seen as a shift of the threshold with increasi
substrate rigidityD. The threshold signals the second-ord
phase transition between the substrate-induced~undistorted!
phase and the adsorbate-induced~distorted! phase. The sus
ceptibility x diverges at the transition. The threshold
shifted to largerD with decreasing coverage. The asympto
increase of̂ u& is slower for lowerQ. This fact agrees with
the reduction of the distance between the shifted minima
Fig. 2.

FIG. 3. The mean distortion̂u& as a function ofqD. D51,Q
51 ~bold solid!; D52,Q51 ~dashed!; D51,Q50.9 ~solid!; D
52,Q50.9 ~dashed-dotted!. All the quantities are dimensionles
~see text!.
c
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e,
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IV. SIMULATION

To recover the structure appearing due to this transiti
we perform the BD simulation@32# which allows us to go
beyond the small distortions up to a complete rearrangem
of the surface. A similar approach has been developed
cently @33–38# in the framework of the generalized Frenke
Kontorova model. We consider two interacting subsyste
of Nj<13103 particles~where j 51,2 for the substrate and
for the adsorbate atoms, respectively!. The case ofN2 /N1
51 is reported here. One of them is confined to the mini
of the external periodic potentialV0(R), which is used to
model the square crystalline surface.

V0~R!52
B0

2p
cos~2pRx!cos~2pRy!, ~40!

with the amplitudeB051 and the perioda51.
In general, the substrate atoms can move from th

minima being affected by the adsorbate. Another subsys
describes the adsorbate, which is attracted to the subs
~moving! atoms and does not interact with the~fixed! peri-
odic potential directly. For simplicity we set both atom
massesmj51. The equation of motion for the atomic coo
dinatesRj i is

R̈j i 1hṘj i 1
]

]Rj i
V0~Rj i !d j 11

]

]Rj i
(
kl

V~Rj i 2Rkl!

5dF~Rj i ;t !, ~41!

where 1< i<Nj . To model a thermal bath we apply th
Gaussian random forcedF ji (t),

^dF~Rj i ;t !,dF~Rj 8 i 8 ;t8!&52hTd j j 8d~Rj i 2Rj 8 i 8!d~ t2t8!,
~42!

to all atoms. The coefficienth51 corresponds to the exter
nal viscous damping due to the energy exchange between
adsorbate and the substrate. It defines the system temper
T. We calculated the average square of velocity to control
temperature fixedT51. Note that some temperature limita
tion should be imposed. The temperature should not be
high. The thermal energy should be lower than the energ
interatomic interaction~otherwise the behavior would be th
same as for a system of noninteracting atoms!. On the other
hand, it must be lower than the magnitudeB0 of the sinu-
soidal potential~otherwise the behavior would be the sam
as for a system without the external potential!. The interac-
tion potential is chosen to be

V~ uRj j 8u!5Vj j 8exp~2Rj j 8
2 /aj j 8!. ~43!

The interaction is repulsive within a subsystem (Vj j .0) and
is attractive for different subsystems (V12,0). To stabilize
the system at short distances we introduce a short-range
pulsing contributionV21.0 ~whereV21!V12 anda21!a12).
The characteristic radiiaj j 8

1/2 determine the range of the inte
action. The potential magnitudes and radii are measure
terms ofB0 anda, respectively.

The results of numerical simulation are summarized
Figs. 4–7. In particular, Fig. 4~a! represents a small (N<2
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FIG. 4. Fragments of two characteristic initial and final substrate configurations:~a! initial ideal square lattice,~b! the adsorbate-driven
structure corresponding toV115V12550, V215V12/2, V2253V12. Other model parameters were taken as follows:a115a2250.875,a12

50.5, a2150.0125. All the quantities are dimensionless~see text!.
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3102 particles! fragment of the initial substrate configura
tion. This structure conserves if the interatomic interactio
are negligible. At nonzero interaction the structure that
velops in time usually consists of different symmetry d
mains@Fig. 4~b!#. Visually one can detect sixth-, fifth-, an
fourth-order local axes. This makes the intermediate str
tures quite complicated for a quantitative description. T
domain wall separating the substrate- and the adsorb
driven structures is also well detected. Numerical solution
Eq. ~41!, supplemented by the periodic boundary conditio
enables us to calculate the density distributions% j (R)
5( id(R2Ri j ) and, after the averaging, the two-body corr
lation functions Gj , j 8(R,R8)5^% j (R)% j 8(R8)& which are
the quantitative measures of the configurations obser
The two-dimensional Fourier transform of the substrate c
relation function

G11~q!5E d~R2R8!eiq(R2R8)G11~R,R8! ~44!

represents our main focus. The distribution of its maxima
shown in Fig. 5. If the corrugation ofB0 dominates over the
V12 and V22, then both subsystems reach the square lat
structure, determined by the substrate@Fig. 5~b!#. If V11
!V22, then the steady state has a distorted hexagonal s
metry @Fig. 5~a!#.

Note that the ideal hexagonal structure may seem q
tionable since its symmetry group is not a subgroup of
square symmetry. On the other hand, the hexagonal sym
try is natural for the adsorbate, provided that the substra
infinitely soft. Therefore, for a finite substrate rigidity w
observe the distorted structure with two common reflect
axes indicated. This makes a compromise between the sq
~unperturbed! structure and the hexagonal one driven by
adsorbate. All intermediate distributions appear as supe
sitions of these two limiting cases. Namely, theb,b8 maxima
~and complementary to them! disappear and thea,a8 ~and
complementary! peaks grow if one passes from the substra
to the adsorbate-driven structure. This is demonstrated
s
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Fig. 6, which represents the evolution of the specific pe
with increasing adsorbate-adsorbate interactionV22.

The rate of interaction at which theb,b8 peaks become
indistinguishable is quite sensitive to the noise produced
the random forcedF ji (t). In fact, these peaks do not disa
pear at all; they become comparable to the level of the no

According to the general approach@39#, the normalized
height difference ofb ~or b8) peaks for two structures dete
mines the order parameter which is depicted in Fig. 7.
estimate the time necessary to reach the steady state w
V225V22

max550 ~this corresponds to the adsorbate-driv
structure!. All other parameters of the problem and the re
tions between them (V115V12550,V2253V12,V21

0 5V12
0 /2,

a115a2250.875,a1250.5,a2150.0125) are kept fixed. Here
Vi j andai j are measured in terms of the corrugation amp
tudeB0 and the initial lattice spacing, respectively. A typic
example of such an estimation is presented in Fig. 7~a!. Here
we plot a time dependence of the order parameter. T
stages are clearly seen. At short times an intensive distor
of the square lattice takes place. After that the system slo
relaxes to the adsorbate-driven structure. The estima
gives tmax51.531023h21. The relative time is given in
units of tmax.

FIG. 5. Maxima of G11(q) for the substrate configuration
shown in Fig. 4. The lettersa,a8 and b,b8 denote the maxima
specific for symmetrically different structures~see text!. Dimen-
sionless wave numbers are denoted asqx andqy .
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Then we increase theV22 from the trivial case ofV22

50 up toV22
max. At each step we calculated the order para

eter

P512G11~qb ;V22!/G11~qb ;V2250!, ~45!

which is plotted in Fig. 7~b!. The relative strength of inter
action is determined asV22/V22

max. Qualitatively the same
result is observed whenV12 changes at fixedV22. Since the
elastic matrices treated analytically are just the second
rivatives of the potentials, the curvatures are proportiona
the potential magnitudes. The proportionality coefficient d
appears when the ratio is taken. This allows us to comp
the theoretical prediction@from Eq.~36!# with the simulation
result.

The asymptotic regime (^u&→1), corresponding to the
adsorbate-driven structure, is described correctly. But a
viation is seen near the threshold. This is due to the finite
size which leads to difficulties in extracting theb peak from
the satellite fluctuations. The rate of interaction at which
b,b8 peaks become indistinguishable is quite sensitive to
noise produced by the random forcedF ji (t). Therefore the
threshold should be associated with the inflection point@40#
appearing atV22/V22

max'0.154~the theory gives 0.183!. The
inflection point is clearly seen at Fig. 7~a!. On the other
hand, the threshold is predicted within the MFA, which

FIG. 6. Evolution ofG11(q) with the change ofV22 described in
text. Other parameters are the same as in Fig. 4. Two sequence@~a!
and ~b!, respectively# represent the transformations of the profil
along the directionsaa8 andbb8 specified in Fig. 5. All the quan-
tities are dimensionless~see text!.

FIG. 7. The order parameter as a function of relative time a
strength of interaction@~a! and~b!, respectively#. Numerical results
are shown by black circles. The dashed line in~a! gives a guide, the
solid curve in~b! represents the analytical estimation obtained fr
Eq. ~36!.
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known @39# to be only qualitatively correct near the orderin
transition. The latter cannot be qualified as the conventio
commensurate-incommensurate transition@1#, since both
subsystems form a common lattice which, however, diff
from that of the clean substrate. On the other hand, this is
the conventional reconstruction@6,7#, because the substrat
itself is stable. The instability towards the structural chan
is induced by the adsorbate. This suggests that in the p
ence of competing interactions these two tendencies
mixed to give qualitatively new structures.

The competing effects discussed above take place eve
the substrate has the hexagonal symmetry. In this case
symmetry of a close packed adlayer is the same as that o
substrate. Then the effective radiiai j are expected to induce
stronger impact than that of the magnitudesVi j . Let us recall
that the short-ranged repulsing contribution with the mag
tudeV21 and the radiusa21 was initially introduced to stabi-
lize the numerical solution. Nevertheless the repulsing co
are always important in reality. The range of repulsion a
its ratio to the lattice spacing depend on the nature of
substances forming the interface. By increasing the stab
ing a21 contribution we produce a delocalization of the a
sorbate. This allows us to study cooperative effects aris
due to the long-ranged coupling between the subsystem
addition, we can investigate the configurations different fro
those favored by the strong localization condition accep

d

FIG. 8. Snapshots of the substrate~a!, adsorbate~b!, and com-
mon ~c! structures. Encircled area shows typical arrangemen
pentagons at the hexagonal substrate.

FIG. 9. Maxima ofG11(q) for the substrate configuration show
in Fig. 8~a!. Solid lines connect the pentagonal symmetry set in
first q shell, the dashed line indicates some of such peaks in the
shell. All the quantities are dimensionless~see text!.
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within the theoretical study. In particular, we setVi j 55,a21
51.75,a1150.8,a2252.5,a1250.5. The snapshots corre
sponding to this choice are shown in Fig. 8. The substrate~a!
exhibits a distorted hexagonal structure, but the adsorbat~b!
forms a pentagonal array. This is a cooperative effect app
ing due to the coupling of an adsorbate particle to ma
substrate particles (a2252.5). The coupling results in an e
fective attraction between the adsorbates and favors a
tiple bonding. Then some substrate sites remain ‘‘empty’’@as
is seen in~c!#. The encircled fragment represents a typic
arrangement of pentagons at the hexagonal substrate.
empty substrate sites contribute to the distortions observe
the snapshot~a!.

The substrate correlation function is shown in Fig.
Black peaks correspond to the unperturbed lattice~only the
first q shell is shadowed!. In addition, two sets of the
adsorbate-induced~pentagonal! peaks are observed withi
the same range ofq. One of these sets is indicated, the oth
may be visualized by symmetrical prolongation of the ar
across the central peak. This indicates that the substrate
quires a pentagonal substructure due to the coupling with
adsorbate.

If we decrease the range of the substrate repulsiona11
50.42) and increase the range of attraction between the
systems (a1250.75), then we observe a honeycomb ads
bate structure shown in Fig. 10~c!. It is seen that the substrat

FIG. 10. The honeycomb adsorbate structure appearing a
hexagonal substrate with increasing range of attraction betwee
subsystems. The common configuration~a!, the substrate~b!, and
adsorbate~c! configurations.
,
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is almost unchanged~b!. The common arrangement~a! is
quite peculiar. In fact, each substrate site is a center of
adsorbate cell.

V. CONCLUSION

In this paper we have studied the influence of the ads
bate on the underlying substrate through the competing
teraction between them.

Employing a generalized lattice gas theory and the
simulation, we have shown that the competing displac
interaction in the adsorbate may cause a continuous dis
tive transition in the underlying substrate.

The threshold for the transition is determined by the co
petition of the substrate rigidity and the quasielastic ene
induced by the adsorbate. The theoretical prediction~within
the MFA! for the behavior of the order parameter agrees w
with the simulation result.

In the presence of a strong pinning and repulsive late
interaction, the resulting structure appears as a comprom
between the square lattice of the substrate and the hexag
arrangement of the adsorbate.

The difference of coverages for the distorted and und
torted lattices is determined by the average distortion ene
This difference is positive~negative! for attractive ~repul-
sive! lateral interactions.

For hexagonal substrate lattices the simulation dem
strates that various adsorbate structures~from honeycomb
lattices to quasicrystalline pentagonal configurations! may be
observed, depending on the effective radii of interacti
Due to the long-ranged coupling the substrate correla
function may acquire additional maxima which reflect a su
structure induced by the adsorbate.
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