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Controlling frictional behavior in nanoscale sheared systems can be made possible when the relationship between the macroscopic

frictional response and the microscopic properties of the sheared systems is established. Here, a new approach is proposed for tuning

the frictional response and obtaining desirable frictional properties. This tuning is achieved through shear-induced phase transitions

in a mixed lubricant monolayer consisting of a base solvent and an additive. The interaction between the solvent and additive

molecules and their relative concentrations are shown to be the major parameters in determining the magnitude of the friction force

and the nature of the response (stick–slip or sliding).
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1. Introduction

Recently introduced experimental tools that allow
detailed investigations of friction at nanometer scales
have led to a major increase in activity in the study of
interfacial friction on the microscopic level [1–8]. Deal-
ing with frictional properties over the nanometer scale,
nanotribology offers a meeting ground for practical
aspects of friction with new and fascinating physical
phenomena such as dynamic phase transitions, giant
enhancement of viscosity under confinement, shear-
induced chaos, memory effects and more [9–14].

The field of nanotribology revolves around the
attempt to understand the relationship between macro-
scopic frictional response and microscopic properties of
sheared systems. What one wishes to deduce from
experimental observations and from theoretical model-
ing are new insights that will help establish the origins of
friction forces, differentiate among different embedded
systems (lubricants), maintain the desired types of
motion and control frictional forces.

Controlling frictional forces has been traditionally
approached by chemical means, usually supplementing
base lubricants by friction modifier additives [15,16].
Each additive in such molecular mixtures has a different
role: some decrease static friction and eliminate unde-
sirable stick–slip motion, some influence the tempera-
ture dependence of viscosity, others inhibit corrosion
[15,16]. While the behavior of single-component lubri-
cants in nanoscale confinements has been extensively
studied both experimentally and theoretically [1–14],
investigations of the behavior of molecular mixtures
under similar conditions are in their early stages [17,18].

Questions on frictional forces of mixtures, regimes of
motion, stability, microscopic behaviors of the additives
and their interactions with the base lubricants and
substrates are still open.

In this paper we propose a new approach that helps
in deciding on how to tailor molecular mixtures so that
they provide desirable frictional properties. Tuning
friction is achieved here through shear-induced phase
transitions in the mixed embedded system. We focus on
the relationship between the macroscopic frictional
response and microscopic properties of the sheared
molecular systems such as intermolecular interactions
and relative concentrations. Understanding the mole-
cular picture would then allow one to create desirable
phases of motion and to control frictional forces.

2. The model

In order to mimic surface forces apparatus (SFA)
experiments on sheared confined liquids [1–4] we intro-
duce a model that consists of two rigid plates, with a
monolayer of N particles each of mass m at locations
ri ¼ fxi; yig embedded between them (figure 1). One of
the plates of mass M and center-of-mass coordinate
R ¼ fX;Y g is pulled with a linear spring of spring
constant K. The spring is connected to a stage that
moves with velocity V. This system is described by
2Nþ 2 equations of motion:

M@2R=@t 2 þ
XN
i

�@ðR� riÞ=@tþ
XL
i¼1

@UAðri � RÞ=@R

þ
XN
i¼L

@UBðri � RÞ=@Rþ KðR� VtÞ ¼ 0 ð1Þ
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m@2ri=@t
2 þ �@ð2ri � RÞ=@t

þ @½UA;Bðri � RÞ þUA;BðriÞ	=@ri

þ
XN
i 6¼j

@�ðri � rjÞ=@rj ¼ fiðtÞ; i ¼ 1; . . . ;N:

ð2Þ

Here, we consider a mixed monolayer consisting of two
types of molecules A and B, a ‘‘base solvent’’ and an
‘‘additive’’, respectively. Molecules A are numbered
from 1 to L and molecules B from L and N. Molecules
A and B are chosen in such a way that they tend to
occupy different sites on the surfaces of the plates,
for instance at the top of a substrate atom and at
the center of the substrate lattices. Correspondingly
the interactions between each of the plates and mole-
cules A and B are given by different periodic potentials,
namely UAðrÞ ¼ UA½cosð2�x=aÞ þ cosð2�y=aÞ	 and
UBðrÞ¼ �UB½cosð2�x=aÞ þ cosð2�y=aÞ	, where a is the
periodicity of the substrate lattices. The A–B inter-
molecule interaction is described by a potential � which
includes a short-range repulsion, C exp½�ðri � rjÞ

2=c2	,
and a regularized Coulomb interaction, qAqB=½b

2þ

ðri � rjÞ
2
	
1=2, where for the effective charges we assume

qB ¼ �qA ¼ q, and b is a cutoff parameter. The chosen
Coulomb interaction provides an attraction between
different types of molecules and a repulsion between
identical molecules. The parameter � accounts for the
dissipation of the kinetic energy of each particle due to
interactions with excitations in the plates. For simplicity
we assume that all molecules have the same mass m,

dissipation constant � and that UA ¼ UB ¼ U0. The
effect of the thermal motion of the embedded molecules
is given by random forces fiðtÞ, which are �-corrected,
h fiðtÞ fið0Þi ¼ 2kB�T�ðtÞ�ij. T is the temperature and kB is
the Boltzmann constant. The two plates do not interact
directly. It should be noted that the particular form of
the interactions chosen here serves only as an example to
demonstrate the suggested mechanism for tuning fric-
tion. However, our conclusions are mostly independent
of the particular form of the potentials.

3. Effect of additive concentration

Most studies of frictional forces, using SFA, have
focused on the time series of the spring force that
represents the lateral response to an external driving
force. Before analyzing the model in equations (1) and
(2) and describing how to tune friction, we present in
figure 2 an example of the dependence of the time-
averaged spring force on the concentration � of the
additive molecules B, where � ¼ ðN� LÞ=N. The total
number of embedded molecules is kept constant. The
calculations have been done for three values of driving
velocities which correspond to periodic and chaotic
stick–slip behaviors which occur at low driving velocities
[1–14], and to steady sliding typical of higher velocities.
Figure 2 demonstrates a decrease in friction with an
increase in the concentration of the additive. A more
than fourfold reduction of friction is observed when the
concentration of the additive changes from 0 to 0.5. We
observe a decrease in friction for all regimes of motion,
with the strongest effect at low driving velocities, where

Figure 1. Schematic representation of the model geometry and snapshots of the sheared monolayer showing a tetragonal lattice for the locked

states and a hexagonal one for the sliding states. The insets show the corresponding correlation functions. Parameter values: N ¼ 200,

M=m ¼ 0:7N, � ¼M!=N, q ¼ 0:9ðU0aÞ
1=2, K ¼ 80U0=a

2, c ¼ a, C ¼ 2U0, kBT ¼ 10�3U0, V ¼ 0:3!a and ! ¼ 2�ðU0N=MÞ
1=2=a.
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the stick–slip motion occurs. Under our assumptions the
spring force versus the concentration of the additive
molecules is symmetric with respect to � ¼ 0:5 with a
minimum at equal concentrations of the molecules A
and B. If we choose molecules with different masses,
dissipation constants and/or interaction parameters the
corresponding curves will be asymmetric around
� ¼ 0:5.

4. Qualitative discussion in terms of the effective potential

To understand qualitatively the effect of the additives
on the system properties it is convenient to look at the
effective potential between the A and B particles as a
function of the distance between them. This includes the
underlying periodic potential, Coulomb interaction and
short-range repulsion. Figure 3 shows the evolution of
this potential with an increase of the interaction between
the molecules. The effective potential exhibits a max-
imum Umax at short and long A–B distances, separating
two minima, which correspond to paired (Umin 1) and
unpaired ðUmin 2) configurations of the A and B mole-
cules. The deeper the minimum, the more probable is the
corresponding configuration. The probability of transi-
tions between the states is defined by the difference
between the maximum of the energy and the relevant
minimum. Evolution of the positions of the maximum
and minimum (up to their merging) with the increase in
the attraction is shown in figure 3 by points and stars,
respectively. There are three critical values of the
attraction parameter q: q1, q2 and q3. When q < q1 pairs

Figure 2. Dependence of average spring force on the concentration of

additives for driving velocities V=!a ¼ 0:04, 0.3 and 0.7 corresponding

to stick–slip (), intermittent type (�) and sliding (+) motions. The

force, time and distances are presented in units of 2�U0=a,
1=! ¼ ða=2�ÞðM=U0NÞ

1=2 and a. Parameter values are as in figure 1.

Figure 3. Effective potential Ueff of an A–B pair versus the distance r between A and B molecules at different attraction strengths q ðq increases

from the top down). The maximum of the potential () separates two minima (*), corresponding to paired (at r ¼ 0Þ and unpaired A–B states.

Effective potentials Ueffðq1Þ, Ueffðq2Þ, Ueffðq3Þ at critical values of the attraction parameter are marked by bold lines. Parameter values are as in

figure 1.
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are never formed. The binodal energy corresponds to
q ¼ q2, at which the paired and unpaired configurations
are equally probable. For q > q3, the minimum Umin 2

disappears and only the paired A and B particles are
expected to be found.

5. Shear-induced phase transitions and frictional response

In order to clarify the proposed mechanism for tun-
ing friction by adding an additive, we have performed a
detailed study of the geometrical structure of the mixed
embedded molecular layer under shear, and have
established the relationship between geometry and fric-
tional response. Here we present results obtained for the
additive concentration � ¼ 0:5 which corresponds to an
equal number of A and B molecules. Figure 4 shows the
time series of the spring force and of the ensemble-
averaged distance between the molecules. Both are cal-
culated for weak, intermediate and strong attractions
between the solvent and additive molecules. In our
model, the strength of the attraction is determined by
the ‘‘effective charge’’ of the molecules, q. All the curves
in figure 4 have been obtained for the same driving
velocity which corresponds to stick–slip motion for the
base solvent A. In addition, figure 1 shows snapshots of
the embedded system observed during stick and sliding
states of motion for the intermediate strength of
attraction. The instants corresponding to the snapshots
are marked on the time series of the force by arrows in
figure 4(b). The snapshots are complemented by the

two-dimensional (2D) Fourier transforms of the
instantaneous correlation function for the sheared
monolayer, which are also shown in figure 1.

Our results clearly demonstrates that for weak and
intermediate strengths of the A–B attraction the
monolayer in the stick state has a tetragonal symmetry,
for which the distances between neighboring A–A and
A–B molecules equal a and a=

ffiffiffi
2
p

, respectively. For the
weak attraction the monolayer retains also the tetra-
gonal symmetry in the sliding state where the monolayer
molecules move mostly while remaining in the corre-
sponding minima of the molecular-plate potentials. This
is reflected in the time series of the averaged distance
between A–B neighbors, which only slightly fluctuates
around the value of a=

ffiffiffi
2
p

(figure 4(a)). The same is true
for the monolayer containing only one kind of molecule.

In contrast, for the intermediate A–B attraction a
new hexagonal symmetry arises during sliding. Here the
two types of molecules group into A–B pairs and form a
lattice with well-defined hexagonal symmetry, essentially
ignoring the symmetry of the underlying potential (see
figure 1). The effect of pair formation is seen in figure
4(b), which shows a significant decrease of the A–B
distances during sliding compared to the value a=

ffiffiffi
2
p

that is typical of the tetragonal lattice. Sliding and stick
states can be easily distinguished according to the time
series of the spring force shown in figure 4. Our calcu-
lations also demonstrate that, being in the sliding state,
the molecules are, on average, equally distant from the
minima of the plate potentials UAðRÞ and UBðRÞ and
move within the channels between them. Thus, due to

Figure 4. Time dependence of the spring force for different attraction values: (a) weak q=ðU0aÞ
1=2
¼ 0:5, (b) intermediate q=ðU0aÞ

1=2
¼ 0:9 and (c)

strong q=ðU0aÞ
1=2
¼ 1:4. The lower panel of each shows the corresponding time dependence of the distances between neighboring A and B

molecules. Parameter values: V ¼ 0:07!a, � ¼ 2:6M!=N, N ¼ 50; other parameters as in figure 1.
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the intermolecular attraction between the base and
additive, the molecules ‘‘pull’’ each other out of the
minima of the corresponding potentials UA and UB,
effectively decreasing the potential barriers to sliding.
This leads to a significant reduction of friction force in
the sliding state, and to an increase of time intervals that
the system spends in motion.

As noted above, for intermediate strengths of
attraction the embedded monolayer has mostly tetra-
gonal symmetry in the stick state. However, A–B
attraction causes the formation of defects: pairs, pair
chains and domains of a foreign phase within the tet-
ragonal lattice. The presence of defects leads to a
decrease in the external force needed to initiate motion
(depinning force) as compared with the cases of weak
attraction and of a monolayer containing only one kind
of molecule. In this way the A–B attraction reduces the
time-averaged depinning force (static friction) and
transforms the almost periodic stick–slip motion into an
erratic one (compare figures 4(a) and 4(b)). However,
figure 4(b) shows that from time to time an almost ideal
tetragonal structure with A–B neighboring distances
close to A=

ffiffiffi
2
p

builds up, accompanied by an enhance-
ment of the instant depinning force. This occurs as a
result of the effective stirring of the system, which can
take place during long intervals of sliding motion. Such
a motion induces annealing, which removes defects that
always arise under preparation of the system, off the
tetragonal lattice.

For strong A–B attraction we find that the embedded
molecules form at all times a nonideal hexagonal lattice,
which includes pair chains and dislocations. Many sites
are found to have a local symmetry of the fifth–seventh
order. Figure 4(c) shows that at all times the molecules

coalesce into A–B pairs drastically reducing the fric-
tional force. In this case the system executes sliding
motion even in the range of low driving velocities, where
a stick–slip motion has been observed for weak and
intermediate strengths of attraction.

6. Analysis of the geometrical structure of the sheared

layer

6.1. Density of states

The effect of the rearrangement in the mixed system
under shear is clearly reflected in the time-averaged
density of states, which provides the probability of
finding a pair of molecules with a given distance between
them. One can study separately the distances between
identical A–A and different A–B molecules. It is also
useful to distinguish between contributions of the stick
and sliding intervals to the density of states [19]. As a
result, there are four separate contributions to the den-
sity of states shown in figure 5. (Here, the states with a
top plate velocity less than 0.25V were considered as the
stick states and all other states as the sliding ones. The
value 0.25V lies approximately half way between the
typical maxima of the density corresponding to the
sliding and the stick states.) All the contributions to the
density of states are normalized to the total number of
states. Thus, the contributions of stick and sliding states
to the total distribution are proportional to the duration
of the corresponding state.

Figure 5 shows that at weak attraction the most
probable distances between A–B molecules lie around
a=

ffiffiffi
2
p

, while those between A–A molecules are con-

Figure 5. Contributions to the density of states with given distances between the A–B and A–A molecules. Parameter values: N ¼ 72,

� ¼ 2:6M!=N; other parameters as in figure 1.
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centrated around a. These values are natural for the
tegragonal lattice. It should also be noted that a weak
interaction cannot separate the A–A pairs, which are
virtually frozen from an initial random configuration of
the molecules. Such pairs survive for a long time and
give rise to the additional maxima, which are seen in the
A–A density of states in figure 5 for weak interactions.

When the interaction exceeds some critical value
q ¼ q1, A–B pairing becomes possible. It causes an
appropriate maximum in the density of states above
q ¼ q1. At the same time, the increase of the interaction
improves the effective annealing of the frozen defects.
The annealing competes with the A–B pairing at the
intermediate strength of interactions and even leads to
the formation of the ideal tetragonal lattice at some
values of the interaction. This tetragonal configuration
corresponds to sharp maxima in the density of states at
the distances a and a=

ffiffiffi
2
p

, which are clearly seen in the A–
A and A–B subplots for the stick states in figure 5. It is
also slightly reflected by the small narrow maxima in the
subplots corresponding to the sliding states. Physically it
means that due to the effective ‘‘annealing’’ during long
periods of sliding, the molecules manage to occupy the
minima of the substrate potential almost ideally.

For strong attraction, the contribution of the sliding
states dominates over that of the stick states, and the
embedded system spends most of the time in the hexa-
gonal configuration with the A–Bmolecules grouped into
pairs. This corresponds to a density that is concentrated
around the distance typical for the hexagonal structure.

As the attraction increases further, all the contribu-
tions to the density distribution become smeared out
and tend towards a universal density distribution

P ¼ ða2=2�Þr expð��r2=a2Þ ð3Þ

characteristic of a system of randomly distributed par-
ticles (see appendix A). This randomization is caused by
the many-body nature of the system, which results in a
transformation of the energy of interactions into a
thermal energy. This process is more effective for
stronger interactions between the particles and/or for
higher driving velocities. As a result of such well-known
thermalization of the dynamical system [20], the den-
sities of states approach asymptotically the universal one
found for the randomly distributed particles.

6.2. Fraction of paired solvent–additive molecules

The calculated density of states allows the fraction of
A–B pairs at any value of attraction to be found. Figure
6 shows the fraction of pairs (bold line) as well as the
contributions to it from the intervals of stick and sliding
(thin lines) which have been obtained by integrating the
density of states.

Besides the obvious increase of the fraction of A–B
pairs with the interaction, one can see fine structure in
the curves, which corresponds to the mixed state
including both paired and unpaired A–B configurations.
In particular, there is a well-pronounced maximum at
intermediate interactions, q � 1. This maximum corre-
sponds to the A–B pairs that survive from the initial
random configuration.

The observed behavior of the fraction of A–B pairs
can be understood qualitatively, and described analyti-
cally, using the effective potential shown in figure 3. The
probability that the A–B molecules are paired (or
unpaired) is determined by the relationship between the
energies of the corresponding minima and the energy of

Figure 6. Fraction of pairs among A–B molecules in the stick states (�), in the sliding states ($) and the total fraction of pairs (bold line) as a

function of A–B attraction. The inset shows analytical estimations of the fractions of pairs Q1, Q2, Q3 and of the total fraction of pairs Q (bold

dashed line) versus q fitting the numerical result (solid line). Parameter values:N ¼ 72, � ¼ 2:6M!=N, V ¼ 0:04!a; other parameters as in figure 1.
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the maximum that separates them. It is convenient to
introduce the following three probabilities:

Q1 ¼ 1=f1þ exp½�Umin 2 �Umin 1Þ=kT 	g; ð4Þ

Q2 ¼ exp½�ðUmax �Umin 2Þ=kT 	; ð5Þ

Q3 ¼ 1� exp½�ðUmax �Umin 1Þ=kT 	: ð6Þ

Here, Q1 is the probability for A–B molecules to become
paired at equilibrium in the absence of the external
drive. The probabilities Q2 and Q3 account for a none-
quilibrium nature of the system under shear. Q2 is the
probability for A–B molecules to become paired from
the unpaired configuration and Q3 is the probability for
A–B molecules to stay paired if they are initially paired.
The dependencies of Q1, Q2 and Q3 on the strength of
the interaction are shown in the insert to figure 6.

It should be noted that the number of paired
(unpaired) molecules at the beginning of each stick
interval is determined by how the ideal tetragonal con-
figuration is formed immediately after sliding. This
depends on the effectiveness of annealing the defects
during sliding, which depends on the duration of the
sliding states. The latter, as we saw, is proportional to
the fraction of paired molecules. This fraction is deter-
mined by Q3 for weak attraction and by Q1 for stronger
attractions. Thus, the final estimate Q for the fraction of
pairs can be written as

Q ¼ Q2Q1 þQ1ð1�Q1Þ þQ3ð1�Q3Þ: ð7Þ

Figure 6 shows that this analytical expression, together
with equations (4)–(6), fits the numerical data rather
well.

The fraction of pairs saturates, Q � 1, around the
second critical interaction parameter q ¼ q2. However,
at stronger interactions it falls again. This is caused by
the effect of thermalization of the system at strong
interactions, which is discussed above. In this region the
dynamics of the system looks similar to that determined
by a random noise. All the distributions become
smeared, and the asymptotic value of the fraction of
pairs tends to 0.5.

The dependence of the fraction A–B pairs on the
intensity of random noise is shown in figure 7. As has
already been discussed, this curve cannot be described
by the equilibrium fraction of pairs, Q1. It also includes
corrections due to the transitions between paired and
unpaired states. For low-noise values the calculated
curve deviates from Q1 due to the contribution of shear-
induced transitions from unpaired to paired states. For
high-noise values the transitions from paired to
unpaired states contribute essentially to the calculated
fraction of pairs. As expected, in this case the curve
approaches the asymptotic value 0.5.

6.3. Dynamical phase diagram

The accumulated fraction Q of A–B at different
values of the attraction and driving velocity allows a
phase diagram of the embedded system under shear to
be built (figure 8). It shows two asymptotic ordered
phases: the tetragonal phase, which exists in the region
of weak attraction and low driving velocity V, and the
hexagonal phase for high attraction parameter q. These
phases are separated by a mixed phase where the tetra-

Figure 7. Fraction of pairs among A–B molecules in the stick states (�), in the sliding states ($) and the total fraction of pairs (bold line) as a

function of the intensity of the external noise. Parameter values: N ¼ 72, � ¼M!=N, V ¼ 0:04!a; other parameters as in figure 1.
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gonal and hexagonal domains coexist. In the mixed
phase the transitions between hexagonal and tetragonal
states take place during stick–slip events.

An additional phase can be distinguished, which is
located at high driving velocities and weak attractions.
It can be defined as the sliding rhombic phase. In this
phase the lattice of the molecules, as a whole, is pulled
out of the potential minima created by the plates, so that
its tetragonal symmetry is only slightly deformed during
the transition to sliding.

Shear-induced transitions between tetragonal and
hexagonal phases observed here resemble the
Kosterlitz–Thouless transitions in 2D systems with
Coulomb interactions, where pairing–unpairing of
oppositely charged particles occurs under a change of
the balance between interaction and temperature [21]. In
our case the pairing–unpairing is mainly controlled by
the balance between periodic potentials and interaction
strength. Here an external force shifts the particles from
the potential minima so that the plate velocity rather
than temperature plays the role of the characteristic
parameter that triggers the transition. The driven system
resides alternately in both Kosterlitz–Thouless phases,
and their contributions to the average are dictated by
the duration of the stay in each phase. Coexistence of
the tetragonal and hexagonal phases has been also
observed here at every instant in the form of domains of
one phase inside another. Because of competition
between the interactions, as well as strong fluctuations
typical of 2D systems, neither ideal tetragonal nor ideal
hexagonal lattices have been observed under shear.

7. Tuning friction by intermolecule interaction

In order to characterize quantitatively the effect of A–
B attraction on the frictional force, we present in figure 9
the time-averaged frictional forces as a function of the
attraction parameter in three typical regimes of motion:
stick–slip, intermittent motion and sliding. A significant
reduction in friction with an increase in attraction has
been found in all regimes. However, the strongest effect
(a 12-fold reduction of the force for particular chosen
parameters) has been observed for the smallest driving
velocity, which corresponds to a periodic stick–slip
motion in a system with one kind of molecule.

This observation can be understood by taking into
account that there are two contributions to the frictional
force: (i) the potential terms UA and UB in equation (1),
and (ii) the viscous term given by

PN
i �@ðR� riÞ=@t. The

potentials UA and UB dominate in the stick–slip regime
(the tetragonal structure), and contribute an estimated
averaged force of �U0N=b [5]. The attraction between A
and B molecules reduces the effective potential barriers,
so the potential contribution to friction decreases sig-
nificantly with the attraction. The viscous contribution
is constrained in the range between �VN and �VN=2 [5].
Thus, at low driving velocities the reduction of friction
can be as large as ð�U0=bþ �V Þ=ð�V=2Þ.

Figure 9. Time-averaged spring force as a function of attraction for

driving velocities V=!a ¼ 0:04, 0.3 and 0.7 corresponding to stick–slip

(), intermittent type (�) and sliding (+) motions. Parameter values are

as in figure 1.

Figure 8. Phase diagram of the embedded monolayer under shear,

showing the fraction of A–B pairs (the decrease in the fraction of pairs

is shown by variation of the color from dark to light) at different values

of attraction and driving velocity. Parameter values: N ¼ 72; other

parameters as in figure 1.
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The viscous term dominates the sliding regime. The
A–B attraction also influences the viscous contribution
by suppressing the velocity fluctuations of the embedded
molecules. However, due to the above-mentioned con-
straints on the value of the viscous term [5], this effect is
less pronounced than the effect of the attraction on the
potential contribution. As a result, for high driving
velocities, where the potential contribution is less
important, the reduction does not exceed a factor of 2.
The effect of velocity on the reduction of friction is
clearly seen in figures 2 and 9, where the dependence of
the friction on the concentration of additive B and on
the strength of attraction is shown. The saturation in the
reduction of friction for a strong attraction, which is
evident in figure 9, is also explained by the constraints
on the viscous term, which is bounded from below by
the value �VN=2.

8. Stop–start experiments

Additional information on the shear-induced phase
transitions can be extracted from stop–start experi-
ments. It has been demonstrated [22] that if during
sliding the external drive is stopped for a certain time �
smaller than some upper limit �� and then reinitiated
with the same velocity, the additional static force
Fs ¼ Fs � Fk (where Fs and Fk denote the static and
kinetic friction force, respectively) to be overcome might
vanish, thereby giving rise to an interesting memory
effect.

These stop–start experiments allow one to estimate a
relaxation time in the embedded system. Here, in order
to find the relaxation time, we followed the averaged
velocity of the embedded molecules during stop–start
experiments, which is well correlated with the experi-
mentally observed behavior of the spring force. We
found that for � > � �, the particles slow down and their
velocity decreases below a threshold value, corre-
sponding to the stick state before resuming the drive.
For � < � � the slowing of the molecules is not significant
and they are ‘‘picked up’’ by the reinitiated external
drive while running. Based on the correlation between
the macroscopic response of the spring force and the
microscopic response of the particle behavior, we have
used the latter to define the delay time in the numerical
experiments. The delay time versus A–B attraction is
plotted in figure 10. This plot indicates the substantial
increase in the delay time with the A–B attraction. There
are two reasons for this phenomenon: (i) the inter-
molecule attraction reduces the effective potential bar-
rier experienced by the molecules, which promotes
sliding and (ii) in the mixed system the symmetries of the
layer in the sliding and stick states are different, which
slows down the transition between them and prolongs
the delay time.

An analytical estimate of the delay time observed in
our numerical stop–start experiment can be found from
the following consideration. Pairing that occurs in the
sliding regime leads to an increase of the energy of the
system compared to that in the tetragonal configuration
where molecules are located in the minima of the com-
bined potential. This excess energy should be dissipated
during the transition from the sliding to the stick state.
A characteristic time for this relaxation can be
approximated by the equation

� / lnð1þUðxÞ=U0Þ; ð7Þ

where x ¼ ð1�
ffiffiffi
2
p

rÞ=2 is a shear-induced displacement
of the molecule from the potential minimum due to
pairing, which can be estimated from the balance of
forces acting on the molecule:

q 2

r 2
�
4
ffiffiffi
2
p
�

a
U0 sin

�

a
ð1� r

ffiffiffi
2
p
Þ

h i
�
2C

c
r expð�r 2=cÞ ¼ 0;

ð8Þ

and U � 4U0N cosð�x=a
ffiffiffi
2
p
Þ is the difference between

the energies of the system in the paired and unpaired
configurations. A comparison of the numerical data
with the calculations according equations (7) and (8) is
shown in figure 10. A good agreement between numer-
ical and theoretical results confirms the adequacy of the
suggested mechanism of memory effect.

9. Control of the regimes of motion

Mixing the embedded layer with additives not only
reduces friction and increases the delay time, but it also
makes it possible to control the regimes of motion. That
is, tuning the concentration of additives or/and the
attraction between the additive and the base solvent
allows stick–slip motion to be eliminated and sliding to

Figure 10. Delay time � � as a function of A–B attraction, obtained

from numerical stop–start experiments () and by the method of least

squares (line). Parameter values: N ¼ 50, M=m ¼ 70N, � ¼ 10M!=N,

V ¼ 0:1; other parameters as in figure 1.
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be achieved at low driving velocities (see figures 4(a) and
4(c)). As an illustration, figure 11 shows the critical
velocity corresponding to the transition from stick–slip
motion to sliding as a function of the attraction. This
curve has two characteristic features: a shallow increase
of critical velolcity at weak–intermediate interactions
and a steep decrease of critical velocity for the stronger
attraction.

The first effect can be understood by taking into
account the fact that in the present model the A–A
repulsion increases along with the increase in A–B
attraction. The repulsion prevents the formation of
defects (A–A pairs) and favors an ideal tetragonal
arrangement in which the molecules have to overcome
the highest potential barriers during motion. As a result,
the sliding regime begins at a higher driving velocity.
The second effect, observed at strong attraction, is
explained by pairing of A–B molecules, which leads to a
decrease of the effective potential barriers and reduces
the critical velocity. Such a possibility of controlling the
regimes of motion can be of great technological
importance for micromechanical devices, where the
early stages of motion and the stopping processes, which
exhibit stick–slip, pose a real problem.

10. Conclusions

A new approach has been suggested for controlling
frictional forces and obtaining desirable phases of
motion. A model has been introduced, which simulates
the SFA arrangement with an embedded monolayer
consisting of two kinds of molecules—base A and
additive B. We have found that the symmetry of the
embedded mixed layer changes during stick–slip transi-
tions due to shear-induced phase transitions. A phase
diagram of the embedded system under shear has been

built in driving velocity–attraction coordinates, where
tetragonal and hexagonal asymptotic ordered phases,
separated by a mixed one, as well as an additional
rhombic phase have been distinguished. Due to the
phase transition, tuning of the frictional forces by add-
ing the additives is achieved. The effect of the rearran-
gement in the layer under shear is clearly seen in the
density of states of the embedded system. We calculated
the fraction A–B pairs as a function of the strength of
attraction using the density distribution. It is shown that
A–B pairing effectively reduces the potential barrier that
needs to be overcome for initiating sliding. The effect of
A–B attraction on the frictional force has been char-
acterized quantitatively by studying the time-averaged
frictional forces in three typical regimes of motion as a
function of the attraction parameter. The maximum
possible value of the reduction of friction has been
estimated by separating the potential and viscous con-
tributions to the frictional force. We have shown that
mixing the embedded layer with additives not only
reduces friction and increases the delay time, but it also
makes it possible to control the regimes of motion. In
particular, increasing the A–B attraction strength allows
the stick–slip regime to be eliminated and steady sliding
to be reached at low driving velocity. In addition, shear-
induced phase transitions result in a significant increase
of relaxation time of the embedded system (memory
effect), which can be measured in stop–start experi-
ments.
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Appendix A

Here we calculate the probability of finding a nearest
neighbor at a distance r in the system of randomly dis-
tributed particles. This probability can be presented as a
product of two factors: the probability Pr of finding a
particle in the interval ½r; rþ dr	

Pr � rdr; ðA1Þ

and the probability PS that there are no particles inside
a circle with radius r

PS � ð1� �r
2=S ÞN; ðA2Þ

where S is the area of the system of N particles. So, when
the number of particles tends to infinity the required

Figure 11. Critical velocity of the transition from stick–slip motion to

steady sliding of the top plate as a function of the A–B attraction q.

Parameters values: N ¼ 50; other parameters as in figure 1.
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probability is P � limN!1 ½PrPSðN Þ	. Finally, for the
density distribution one has

P ¼ r expð��r 2=a2Þ=

ð
r expð��r 2=a2Þdr

¼ ða2=2�Þr expð��r 2=a2Þ: ðA3Þ
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