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Introduction.

 

 In recent years, increasing attention
has been devoted to the phenomenon of adhesion in
various fields such as the contact mechanics, tribology,
and the technology of adhesives and, especially, self-
adhesive materials [1]. A large number of investigations
have been devoted to theoretical aspects of the adhesive
interactions as well as to their practical aspects [1–3].
One particular task of these investigations is inspired by
the need of robot technology in creating artificial sur-
faces of the gecko foot type capable of sticking (revers-
ibly) to solid surfaces of various kinds. Theoretical
investigations of the adhesive contacts usually proceed
from the main idea of the classical Johnson–Kendall–
Roberts (JKR) theory [4], which is based on the analy-
sis of a balance of the elastic energy of deformation of
contacting bodies and the contact surface energy. How-
ever, as will be shown below, this simple microscopic
approach does not always provide adequate description
of the laws of adhesion.

The simplest example of application of the energy
approach in the theory of adhesion is offered by a thin,
flexible and nonstretchable film peeling off a flat solid
surface (Fig. 1). The force per unit length of the peel-
off line at an angle 

 

α

 

 relative to the substrate surface
will be denoted 

 

F

 

 = {
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x
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z

 

} = {
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}, and the
energy necessary to separate a unit film area from the
substrate surface (i.e., the effective surface energy of
interaction between the film and substrate) will be
denoted 

 

γ

 

. Let us calculate the angle 

 

α

 

 for which the
peel-off line occurs in equilibrium. As the contact
length between the film and the substrate surface
increases by 

 

∆

 

l

 

, the film energy decreases by 

 

γ∆

 

l

 

, the
end of the film travels over a certain distance

 

 s

 

 and per-
forms the work 

 

Fs 

 

against the pull-off force 

 

F.

 

 In equi-
librium, we have 
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. As can be readily shown, 

 

s
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) and, hence, 
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γ

 

. Here, 
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0

 

 is

1

 

the pull-off force, below which the film exhibits self-
adhesion and above which the film peels off. Thus, the
critical pull-off force is a monotonic function of the
peeling angle:
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which decreases from 
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0
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 at small angles (
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 1) to
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 = 
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/2 at 
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 = 
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.

 

Microscopic model.

 

 If the above standard energy
considerations were correct, it would be possible to
reproduce the result described by relation (1) in a
microscopic model with a surface energy modeled by
interactions between solids (of the van der Waals force
type). However, the results of an analysis of the micro-
scopic model described below show that direct model-
ing leads to the behavior qualitatively different from
that predicted by relation (1).
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—A numerical model describing the process of thin adhesive film peeling off a solid surface is con-
sidered. A qualitative distinction of the “microscopic” picture from the notions of the standard theory of adhe-
sion (based on the energy balance) consists in that separate elements of the film peel off the surface along vir-
tually the same trajectory irrespective of the direction of the external force action. A more thorough analysis
shows that a fine difference between the scenarios of behavior in the vicinity of the touch point still exist, so
that one can speak of the two classes of universality corresponding to 
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 < 
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/2 and 
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 > 

 

π

 

/2. The results of anal-
ysis of the proposed microscopic model allow a more correct macroscopic criterion to be formulated for the
adhesive surface peeling. 
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Fig. 1. 

 

Geometry of film peeling off a flat solid substrate
surface (see the text for explanations). The inset shows a
plot of the critical pull-off force 

 

F

 

0

 

 versus angle 

 

α

 

 corre-
sponding to formula (1).
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For the sake of simple and illustrative representation
of results, the consideration below will be restricted to
a one-dimensional elastic chain. However, the results of
our additional numerical experiments showed that vir-
tually all results obtained for this simple model can be
reproduced in a more realistic model of a two-dimen-
sional adhesive film. In constructing the simple micro-
scopic model, we have to take into consideration at
least the following factors: the elastic interaction
between elements (segments) of the chain, their attrac-
tion to the surface of the substrate and repulsion from
its deeper layers, and the external pull-off force.

In order to reproduce the elastic properties of a sys-
tem, it is usually sufficient to restrict the consideration
to a linear elastic bonds in a sequence of “material
points” spaced by 

 

dx

 

, which represent the neighboring
surface elements with the coordinates 

 

z

 

(
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 + 
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) and

 

z
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)], where

 

 K

 

 is the elastic constant
characterizing the interaction between mobile elements
in the elastic chain. However, the linear bonds cannot
determine the distance between elements in cases when
the chain is freely moving in space rather than sup-
ported on a certain “substrate.” For adequate modeling
of such a chain, the elastic bonds should be nonlinear
[5–7]. In a widely used simple variant (see, e.g., [8] and
references therein), it is possible to restrict the consid-
eration to a fourth-order interaction potential of the

type 
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. Then, the required components  = –
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 of the force of interac-
tion between elements are characterized by the cubic
nonlinearity that does not admit rupture of the chain
and (for the elastic constant 

 

K

 

 = 4 used below) and quite
rigidly sets the distance between elements.

The surface acts upon each element in the chain with
the van der Waals force with the components

 = –

 

U

 

adhesion

 

/

 

x

 

 and  = –
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/
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 cor-
responding to the adhesion potential 

 

U

 

adhesion

 

. This
potential can in most cases be represented by a pair of
Gaussians with the opposite signs and variable width,
which describe the attraction partly compensated by the
repulsion at short distances: 

 

U

 

adhesion

 

(

 

r) = Cexp(–r2/c) +
Dexp(–r2/d). This “seeding” potential (calculated for
C = 0.8, c = 0.2, D = –8, and d = 1) is depicted by thick
gray curve in Fig. 4. Since this potential does not pro-
vide for a repulsion of the chain from the “bulk” sub-
strate, it has to be supplemented with a δ-like term
Ubulk = U0δ(z) (U0 � D; in the calculation, U0 = 300),
which represents a step force supporting the sticking

chain on the substrate surface:  = –Ubulk/z.

For certainty, let us consider the case of a chain
peeled off the surface by the external force Fext =
Kext(Vt – r1), which is developed by a spring extended
between the first chain segment r1 = {x1, z1} and a
holder moving away at the angle α with the velocity
V = {Vx, Vz} = {Vcosα, Vsinα} (in the calculation,
V = 0.2).

In the overdamped limit, the dynamic equations for
the model described above appear as

(2)

Results and discussion. The main results of numer-
ical modeling using system (2) are presented in Fig. 2,
which shows plots of the critical pull-off force Fr for the
film peeling (curve 1) and the total peel-off time tr

(curve 2) as functions of the angle α. As can be seen,
the obtained behavior of Fr(α) cannot be described
using the function γ/(1 – cosα) predicted by the macro-
scopic theory (see the inset in Fig. 1).

A qualitative distinction of the “microscopic” pattern
from the simple geometry used to derive relation (1) con-
sists in that each segment of the elastic chain peels off
the surface along virtually the same trajectory irrespec-
tive of the direction of the external force action. At the
terminal touch point, the flat surface is tangent to this
trajectory.
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Fig. 2. Plots of (1) the critical pull-off force Fr for the film
peeling and (2) the total peel-off time tr versus angle α as
determined by numerical calculations. Curve 3 corresponds
to the macroscopic theory taking into account the work per-
formed only by the vertical force component.

1

3

2



TECHNICAL PHYSICS LETTERS      Vol. 31      No. 10      2005

TWO UNIVERSAL REGIMES OF ADHESIVE FILM PEELING 873

A more thorough analysis shows a fine difference
between the scenarios of behavior in the vicinity of the
touch point still exist (see Fig. 3 and the legend to this
figure), so that one can speak of the two classes of uni-
versality corresponding to α < π/2 and α > π/2. How-
ever, this difference is much smaller that it might have
been expected in the entire broad range of angles 0 <
α < π.

As can be seen from Fig. 2, the critical force and the
efficiency of work performed by this force (character-
ized by the total peel-off time for a chain of certain
length) as functions of the angle α are almost symmet-
ric relative to the vertical line α = π/2. Taking this sym-
metry into account, we have to revise the process of
chain peeling off the substrate surface.

Since every sequential segment peels off the surface
along the tangent, the horizontal component of the
external force is “spent” to perform the work (against
the elastic force) on elongating the chain segments in
this direction. Therefore, only the vertical force compo-

nent  = Fsinα works against the adhesion potential
Uadhesion. Over a distance on the order of the potential
width d, this force has to perform a work sufficient to
detach the chain segment: Frdsinα = Uadhesion|z = 0. This
corresponds to the angular dependence of the pull-off
force Fr ~ 1/sinα, which provides very good approxi-
mation (Fig. 2, curve 3) of the results of numerical
modeling.

In the discrete numerical description of the system
(and in real molecular chains), this scenario of segment

Fx
ext

peeling off the surface must lead to an almost periodic
step process. According to this scenario, each segment
extends to a certain (nearly equilibrium) length and
simultaneously peels off the surface. Subsequent exten-
sion involves the next element into this motion and so
on. This process leads to a quasi-periodic time variation
of the force F(t) in the region of peeling (Fig. 3). As can
be seen, the oscillations in F(t) are most pronounced for
the sliding angles close to α = π. In the continuum limit
(where the spacing of chain segments is much smaller
than the characteristic width of the adhesion potential),
F(t) degenerates into a monotonic function.

The effective potential (z), which acts upon an
arbitrary inner kth segment in the chain at a distance z
from the substrate surface, can be determined by
numerical integration of the vertical force component
Fz(z(t)) over the time series z(t):

(3)

Figure 4 shows the results of such integration for
various angles α. The obtained potential is in good
agreement (with allowance for oscillations related to
the detachment of sequential discrete segments) with
the “seeding” adhesion potential. For relatively small
deviations of α from π/2 (π/4 < a < 3π/4), the effective
potential is virtually independent of the external force
direction. This behavior confirms the above assumption
that, in most cases, the chain peels off the substrate in a
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Fig. 3. Two types of the universal behavior at the point of film peeling off the substrate surface: (a) film configurations in the mobile
frame related to the touch point x = x* for the peeling at various angles (the inset shows the vicinity of the touch point on a greater
scale); (b) quasi-periodic time variation of the force acting on the segment at the touch point.
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universal manner and the process rate is determined
predominantly by the vertical force component.

The obtained results lead to the following conclu-
sions.

(i) The microscopic process of adhesive bond rup-
ture cannot be adequately described within the frame-
work of the macroscopic approach based on the energy
balance;

(ii) The most adequate macroscopic description
with allowance for a real microscopic process can

employ the principle of virtual work only for the verti-
cal force component. The horizontal component appar-
ently performs work against other forces, such as the
force of friction in the adhesive contact, which are usu-
ally not taken into consideration in the macroscopic
theory of adhesion.
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