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A modified Tomlinson equation with fractal potential is studied. The effective potential is numerically
generated and its mesoscopic structure is gradually adjusted to different scales by a number of Fourier modes.
It is shown that with the change of scale the intensity of velocity-dependent damping in an effective Langevin
equation can be gradually substituted by an equivalent constant “dry friction.” For smooth macrosopic surfaces
the effective equation completely reduces to the well known Coulomb law.
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INTRODUCTION

The most striking and famous feature of dry �Coulomb�
friction is that it is usually almost independent of the sliding
velocity �1�. This is in contrast to the linear velocity depen-
dence of microscopic dissipative forces stemming from elec-
tron or phonon scattering processes. This qualitative differ-
ence of dissipative forces observed on the micro- and
macroscales is only one manifestation of a more general phe-
nomenon of the scale dependence of friction: the friction
force is indeed nothing but an averaged result of processes
occurring on scales which are considered as “microscopic” in
a particular problem. The scale dependence of friction is a
fundamental theoretical problem of dynamics of systems
with scale invariant �fractal� structure and has important
practical applications, e.g., in micromechanical and ultra-
sound devices. Recently developed experimental tools of
nanotribology allowed for the investigations of friction at
nanometer length scales and stimulated a great increase in
the study of friction on the microscopic level during the last
decade �2–14�. Many advances have been made in under-
standing the relationship between macroscopic frictional
forces and the microscopic properties of systems �2,8,9,15�.
The problem of transition from velocity-depending damping
in the microscopic Langevin-type Tomlinson equation �16� to
the constant Coulomb friction force has been widely dis-
cussed, but its principally mesoscopic �fractal� meaning,
which involves a solution of multiscale problem, has not
been recognized. The Tomlinson model has been proven to
give a good basis to describe tribological experiments using
a surface forces apparatus, which moves and interacts on the
scales of the atomic potential �10–12�. However, it is cer-
tainly not enough when we try to extend the study into meso-
and macroscales. In this Brief Report we introduce a fractal
description, which extends commonly applied Tomlinson
modeling to arbitrary scales in a different phenomenological
approach. It provides a “microscopic derivation” of a rela-
tively simple but yet useful equation of the Tomlinson type.
This equation appears to describe intermediate dynamical re-
gimes in the whole interval from nanoscale to the macro-
scopic Coulomb friction. We propose a simple experimental
procedure which allows obtaining phenomenological param-
eters of the equation.

MODEL AND DISCUSSION

Let us start from the commonly used Tomlinson model
�16� that has proven to be successful in describing shear
response in surface forces apparatus �SFA� configuration,
namely the lateral motion of a driven plate,

M�2x/�t2 + ��x/�t + �U�x�/�x + K�x − Vt� = 0. �1�

Here a driven plate of mass M and the center-of-mass coor-
dinate x is pulled by a spring of a spring constant K. In
standard Tomlinson equation U�x� is the effective periodic
potential U�x�=U0 cos�2�x /b� experienced by the plate due
to the presence of an embedded system. Below for general
theoretical study we use nondimensional units normalized to
characteristic microscopic scales and energies of a particular
system. The parameter � is responsible for dissipation. The
spring is connected to a stage which moves with velocity V.
This equation was recently supported microscopically, but
was never extended even to the closest mesoscopic scales.
The main problem is that the mesoscopic structure of fric-
tional surfaces is of a fractal character �17� and thereby can-
not be characterized by a certain wave vector �or even few
ones �2,3,8,9�� like it is normally used in applications of the
Tomlinson model. Below we extend the model into a fractal
potential.

Let us consider a fractal potential �17� of the form

U�x� � Ufractal�x� = U0�
q1

q2

dqc�q�cos�qx + ��, c�q� = q−�.

�2�

Here q1 and q2 are characteristic cut off wave vectors and
��x� is a random phase that we assume � correlated
���q���q���=2���q−q��. For the majority of physically in-
teresting systems index � is close to �	0.9 �17,18�. Below
we will keep this value for definiteness. For further study it
is convenient to go over to a discrete representation of the
integral in Eq. �2� 
dqc�q�→� with a discrete step �q be-
tween the wave vectors determined by the smallest vector q1
corresponding to an inverse maximal length lmax of the sys-
tem which equals normally its size lmax=L. The total number
Ntot of the terms in the sum is given by Ntot=q2 /q1
�q2 /�q. A discrete approach is natural for further numerical
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study. It allows us to adjust the potential to different scales
by the number of the modes included into summation
Nmodes�Ntot.

Normally the Tomlinson model is based on an analytical
definition of the potential. The force is calculated at each
time step and the procedure can be formally extended to
infinite time-space runs. The modified fractal model operates
with the data array Ufractal�x�. So, its generation has to be
extended to an infinite run too. For this sake, instead of Eq.
�2� we use the following differential definition of fractal po-
tential: �Ufractal�x� /�x=U0�x� jqjc�qj�sin�qjx+��; where j
=1,2 , . . .Nmodes. It allows us to extend Ufractal�x� infinitely
each time, when the x coordinate runs out of the array bonds.
For numerical procedure it means that the modified Tomlin-
son equation

�2x/�t2 + ��x/�t + �Ufractal�x�/�x + K�x − Vt� = 0 �3�

is actually extended by an additional differential equation
which is solved in parallel.

To study the scale dependence of friction force, we gen-
erate a set of fractal potentials for a different number of
modes included �Nmodes�Ntot�. This number defines a cutoff
wave vector qcutof f =�qNmodes and the corresponding cutoff
wave length 	cutof f =2� /qcutof f of the potential. Some of the
potentials with different Nmodes are shown in Fig. 1. All of
them correspond to the same potential “measured” with dif-
ferent spatial resolution. All space scales larger than the cut-
off wavelength are included in the potential Ufractal�x� and
should be treated explicitly in the frame of the dynamic
model like Eq. �3�.

Typical time dependence of the friction force is presented
in Fig. 2. The initial short fragment of the dependence is
shown in the inset to the figure. It resembles a standard stick-
slip behavior of the friction in Tomlinson model with peri-
odic potential �11�. The only difference is a variation of the
stick-slip oscillations due to randomness of the potential.
Long-time behavior has horizontal asymptotics �in average�
which is defined by the product of damping constant � and
driving velocity V. To get the mean friction at a given num-

ber of modes and velocities one has to omit the initial tran-
sient interval and average over the long-time asymptotic part.
The results of the calculations are accumulated in Fig. 3.

As it was expected at large velocities V→
 the friction
force is proportional to V and degenerates into constant fric-
tion Fef f �0 at low velocities V→0. But, the dependence is
different for different Nmodes. Let us note that this difference
is found explicitly in numerical experiment where one can
keep a desirable number of modes. In reality some micro-
scopic space scales with wavelengths 	�	cutof f cannot be
treated explicitly. Our intention is to describe them by an
additional “friction” force taking into account all the pro-
cesses occurring on the microscopic scales. This means that
if we use a smoothed fractal potential in Eq. �3� instead of
the exact one, we should add an additional friction force
accounting for microscopic processes. This friction force
compensating the excluded microscopic modes will be scale
dependent. Below we search for a compensating force of the
form �ef fv+Fef f. Thus on a mesoscale we propose the fol-
lowing phenomenological equation instead of Eq. �3�:

�2x̃/�t2 + �ef f�Nmodes,�x̃/�t� · �x̃/�t + Fef f�Nmodes� + K�x̃ − Vt�

+ �Ũfractal�x̃,Nmodes�/�x̃ = 0. �4�

Here all variables marked with “�” are smoothed variables

FIG. 1. Fragments of fractal potential generated at different
number of modes included: �a� Nmodes=256; �b� Nmodes=64; �c�
Nmodes=8.

FIG. 2. Typical long-time dependence of friction force for frac-
tal system �at V=1 and �=0.5�. Short initial part of the dependence
with initial transient interval is shown in the inset.

FIG. 3. Mean friction force at different number of modes in-
cluded to the potential as a function of velocity V. Inset illustrates a
procedure of finding velocity dependence of the renormalized
damping constant described in the text.
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of the mesocopic scale corresponding to the truncation of the
fractal potential. We expect that �ef f will achieve the maxi-
mum value � and Fef f the value Fef f =0 if all potential modes
are included, i.e., in the “truly microscopic limit.” In the
other limit Nmodes=0 we expect to see a pure “macroscopic
friction force” Fef f with a diminished damping constant �ef f.
Based on results of numerical experiments with the model
Eq. �4� we found that the following ansatz keeps the macro-
scopic friction force invariant to the number of modes in-
cluded in the model:

�ef f�Nmodes,�x̃/�t�

= ��1 − c1�1 − Nmodes/Nmax�1/2/�1 + c2��x̃/�t�2�;

Fef f�Nmodes� = F0�1 − �1 − Nmodes/Nmax�� , �5�

where F0	c1	0.25; c2	0.4 for �=1. The inset to Fig. 3
illustrates a procedure which leads to the ansatz Eq. �5�. In
the procedure we calculate actual friction force Ffric=K�x̃
−Vt� �counted from its minimum value in the array F0

= �Ffric�Nmodes=Nmax
�, divide it by the velocity V, and find the

difference between this combination and trial damping con-
stant �. Equation �5� gives good interpolation for the result-
ing array. Corresponding curves are shown by the lines in the
inset to Fig. 3. The renormalized mesoscopic friction force
for different truncations of the potential calculated from Eq.
�4� is presented in Fig. 4. The resulting force does not de-
pend on the number of modes included in the potential. It
proves that Eqs. �4� and �5� provide desirable universal de-
scription of the friction in the mesoscopic scale.

The ansatz Eq. �5� does not have direct physical meaning,
but a posteriori one can give it the following qualitative
treatment. The effective friction force degenerates into static
dry friction for a macroscopically flat surface when the num-
ber of modes included in the potential goes to zero, Nmodes
=0. In its turn, the velocity dependent part of the friction
returns to its microscopic value either in the opposite limit
when Nmodes is maximal, or at high absolute velocities.

Current experimental resolution admits a direct check of
the results obtained. One can measure time-dependent fric-
tion force with high accuracy �a few nanometers per second�
and gradually exclude fast harmonics by filtering of the time
series over appropriate scales. Such a study has been per-

formed by our experimental group in Berlin TU. It was
found that static and velocity dependence impacts the fric-
tion change according to the above expectations, and scale
dependence can be eliminated according to the scheme Eqs.
�4� and �5�.

CONCLUSION

To summarize, we have proposed a model equation that
establishes relationships between mesoscopic frictional phe-
nomena and microscopic dynamics of velocity-dependent
damping. The model involves random potential with fractal
spectrum that depends on the scale of the problem. It leads to
a derivation of an effective equation of the Tomlinson type.
This equation incorporates both static and velocity dependent
impacts to the friction and appears to describe intermediate
dynamical regimes in the whole interval from nanoscale to
the macroscopic Coulomb friction. An experimental proce-
dure which allows obtaining phenomenological parameters
of the equation is proposed.
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