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From deterministic dynamics to kinetic phenomena
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We investigate a one-dimensional Hamiltonian system that describes a system of particles interacting
through short-range repulsive potentials. Depending on the particle mean energye the system demonstrates a
spectrum of kinetic regimes, characterized by their transport properties ranging from ballistic motion to local-
ized oscillations through anomalous diffusion regimes. We establish relationships between the observed kinetic
regimes and the ‘‘thermodynamic’’ states of the system. The nature of heat conduction in the proposed model
is discussed.
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The question of how statistical laws emerge from mic
scopic dynamics has been a subject of interest for a long
@1#. Studies of relatively simple dynamical systems provid
link between deterministic dynamics and diffusion pheno
ena@2,3#. In particular, a number of recent dynamical mod
aim at understanding the necessary and sufficient condit
for a system to obey the Fourier heat conduction law@4#.
These examples cover only a part of general problem of h
kinetic and thermodynamic properties emerge from dyna
ics at the atomic scale.

In this paper we propose a many-particle Hamilton
model which exhibits a wide range of mass and energy tra
port regimes, and allows to establish relationships betw
microscopic properties and thermodynamical and kine
phenomena. We demonstrate that kinetic properties of
system are determined by one controlling parameter, wh
is a mean energy per a particle,e. Varying e one can cover
the whole spectrum of diffusion regimes, from ballistic m
tion to ‘‘frozen’’ states through anomalous diffusion regime
We show that the observed kinetic regimes are strongly
lated to the ‘‘thermodynamic’’ states of the system whi
change from a ‘‘solid’’ to ‘‘gas’’ phase as the parametere
increases.

The model describes a system ofN classical particles eac
characterized by coordinatexi and the conjugate momentum
pi . The particles interact through a repulsive short-range
tential according to the following Hamiltonian:

H~xi ,pi !5(
i 51

N pi
2

2
1

A

2 (
i , j 51

N

e[ 2(xi2xj )
2/s2] , ~1!

whereA is the strength of interparticle interaction ands is
the width of repulsive core. The particles are located on
interval of lengthL, and periodic boundary conditions a
applied. The mean energy and density of particles are defi
as e5E/N and%5N/L, respectively, and the mass of pa
ticles m51. Although Eq.~1! describes a one-dimension
system of particles we alow the possibility that the partic
can pass through each other. This leads to a spectrum
dynamical behaviors and mimics higher dimensions. With
assuming particle’s transparency the model reduces to
standard picture discussed in textbooks.

In the high-energy limite/A@1, the system in Eq.~1!
behaves as a gas of freely flying particles, slightly perturb
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by weak interactions. In the opposite low-energy limite/A
!1, the system forms a crystal lattice with a constanta0
51/%. In this solidlike state each particle oscillates at t
minimum of potential well formed by its neighbors. In th
gas phase the system is uniform while in the solid state it
a discrete translational symmetry with a lattice constanta0.
According to Kolmogorov-Arnol’d-Moser theorem, in bot
limits, the system exhibits an ordered dynamical behavio
a region of positive measure in phase space@6#. Due to a
difference in symmetries of the ordered states one can ex
that a transition between these two states with the chang
e will occur through a mixed disordered state.

To study the dynamics of the system in Eq.~1! we use the
following algorithm: At the beginning we put all particles a
an equal distancea0 from each other and give them a kinet
energy according to the Maxwell distribution. After that w
rescale velocities of the particles in order to get a total
ergy equal toNe. Then, for each time step, we integrate t
corresponding dynamical equations using a central differe
symplectic scheme@5#. To extract an information on the
structure and dynamics we introduce also a sorted arra
particles,$xj

sort(t)%, where particles are renumbered acco
ing their actual instantaneous position,$ j %5sort($ i %).

In order to illustrate a nature of excitations in the syste
we show in Fig. 1~a! a time evolution of energy distribution
initiated by a local perturbation at timet50 that had a form
of a kicked group of a few central particles. Here partic
with high and low instantaneous velocities are displayed
light and dark colors, respectively. The light regions are
ganized into lines which correspond to excitations propag
ing along the system. Three types of excitations with diff
ent group velocities, which are given by an inverse slope
the lines, can be distinguished: flying particles, low-ene
phonons, and nonlinear solitonic excitations which are in
mediate in energy between them. The first dynamical mo
flying particles, dominates in the gas state,e/A@1. Nonlin-
ear excitations and phonons play the main role in the op
site solid-state limite/A!1 @Fig. 1~c!#. An energy exchange
between different modes is most effective in a ‘‘liquidlike
state, which corresponds toe/A'1. Interactions between
modes can lead, for example, to a transformation of fly
particle into solitonic excitation@see the circle in Fig. 1~a!#
or to ‘‘burning’’ of flying particle from a sea of phonons an
nonlinear excitations@see the circle in Fig. 1~b!#.
©2004 The American Physical Society01-1
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In order to describe quantitatively a structure of differe
‘‘thermodynamic’’ states arising in the system, we introdu
a reduced distance for a sorted set of particles,j j

5@xj
sort(t)2xj 21

sort(t)2a0#, and calculate the probability den
sity function~PDF! F(j), 2a0,j,L/2 ~see Fig. 2!. In the
low-energy limit the PDFF(j) is governed by a peak nea
the pointj50, which corresponds to a crystal lattice~a right
inset in Fig. 2!. In the gas limit the PDF scales as~see left
inset in Fig. 2!

F~j!;e2x(j2a0). ~2!

FIG. 1. ~a! Time evolution of the energy distribution initiated b
kicking of few central particles, for the system in Eq.~1! (N
5128,e/A50.25). The circle indicates a collapse of flying partic
into a nonlinear excitation.~b! The same system after timet
55000. The circle indicates a birth of two flying particles from t
excitation sea.~c! The set of propagating solitons for the system
Eq. ~1! for e/A51.

FIG. 2. The PDFF(j) calculated for the liquid state,N564,
A51, e50.25,%51, s51. The thin line shows fitting toFgas(j)
in Eq. ~2!. Dashed line corresponds toFsolid(j)512Fgas(j). Left
inset shows PDFF(j) in gas state (e/A510) and the right inset
corresponds to solid state (e/A50.1).
04210
t It is natural to assume that in the intermediate, liquid st
the PDFF(j) can be presented in the form

F~j!5Fsolid~j!1Fgas~j!, ~3!

whereFsolid(j) ~a dashed line in Fig. 2! andFgas(j) ~a thin
line in Fig. 2! describe a solid-state and gas contributio
correspondingly. The solid and gas contributions can be
lated from the net PDF by fitting its asymptotics to the e
ponential distribution, Eq.~2!, at negative and large positiv
j. Then Eq. ~3! allows to introduce the order paramete
which presents a fraction of solid phase

f5

E
2a0

L/2

Fsolid~j!dj

E
2a0

L/2

F~j!dj

. ~4!

Figure 3~a! shows a dependence of the order parametef
on the energy densitye. It exhibits a phase transition from
the gas to solid state ase/A decreases. The plateau ate/A
'1 indicates the presence of the third, mixed state that
be associated with a liquidlike phase. Below we consi
regimes of mass and energy transfer which correspond to
different thermodynamic states.

Flying particles.Particles can fly only when their veloci
ties are higher than a threshold value,v f l'A2Umax, which
is determined by the height of the effective potential crea
by neighboring particles. The latter can be estimated a

FIG. 3. ~a! The dependence of the order parameter, Eq.~4!, f
~black circles! and the diffusion exponenta, Eq. ~5! ~open circles!,
obtained by fitting of the mean squared displacement,^x2(t)&, for a
calculation timet5104; The histograms for a duration of a sing
flight, C f l(t), for ~b! e/A52 and ~c! e/A510; N5512. Uncer-
tainty in a in the intermediate range is about 10%.
1-2
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barrier in a periodic lattice, formed by particles in the so
state,Umax'A$1/22exp@2(a0 /s)2#%.

Each particle dynamics can be characterized by the m
squared displacement^x2(t)&, which in the long-time limit
follows

^x2~ t !&;ta, ~5!

wherea51 for normal diffusion. All processes withaÞ1
are known as anomalous diffusion@7,8#, being subdiffusion
for 0,a,1 and superdiffusion for 1,a,2.

The numerical results presented in Fig. 3~a! clearly show
three different dynamical regimes.

~1! Absence of diffusion fore/A!1 ~solid phase!. In this
case particles perform small oscillations around the min
of the potential, and as a resulta50.

~2! A ballistic regime witha52 for e/A@1 ~gas phase!.
~3! Normal diffusiona51 in the liquidlike state where

e/A;1.
It should be noted that the latter regime exists for a fin

interval ofe. For the values ofe corresponding to gas-liquid
and liquid-solid transitions we have found regimes
anomalous diffusion, namely a superdiffusion in the first c
and subdiffusion the second case~Fig. 3! @9#.

In the case of superdiffusion each particle performs b
flights and trapped oscillations, randomly switching betwe
these two dynamical modes@see Figs. 1~a! and 1~b!#. We
have obtained the histogram for a single flight timeC f l(t),
accumulating the lifetime and length during the interv
where the sign of the particle velocity is fixed. It shows
asymptotic power law decay@Fig. 3~b!# C f l(t);t2g, with
the exponentg'2.5 for the gas phase (e/A510) that corre-
sponds to superdiffusion andg'3 for the high-energy edge
of the liquid phase, ate/A52, that corresponds to a trans
tion to normal diffusion regime. The related PDF has t
same power behavior. We note that the flying particles do
have a constant velocity.

The subdiffusion, which has been found in the transit
region between solid and liquid states, corresponds to s
random jumps of the particles interrupted by long trapp
events. At low energies the probability of strong fluctuatio
which can result in a particle escape from the potential w
becomes very low. This leads to anomalously long trapp
of particles. The particle motion becomes subdiffusive wh
the PDF of trapping times has a power law asympto
C tr(t);t212b with b,1 @8#. In this case the diffusion ex
ponenta in Eq. ~5! equalsb, a5b,1. The subdiffusive
dynamics can be quantitatively described using a continuo
time random walk approach@8#. It should be noted that fly-
ing events are expected in all dynamical regimes. Howe
what distinguishes among phases are the distributions
flight times or segments.

Solitary excitations and phonons.In the low-energy re-
gime the system tends to build a crystal-type structure. Lo
energy fluctuations can create here only relatively smo
nonlinear excitations as well as small-amplitude phonons
the phonon state particles are mainly localized in the mid
point between two nearest neighbors, and the variablej j
introduced earlier can be used as a small parameter,j j /a0
04210
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!1 @11#. Linearization of the equations of motion for th
Hamiltonian in Eq. ~1! gives the elastic constantC

5(2A/s2)@122/(s%)2#e21/(s%)2
, which contains all infor-

mation on the phonon spectrum@11#. This approximation is
not valid for nonlinear excitations, where particles c
strongly deviate from their equilibrium positions. Howeve
in the case of smooth excitations the displacements of
ticles with respect to the corresponding middle points cha
slowly with particle numberj in the sorted arrayxj

sort , and
the differenceyj5(xj 11

sort1xj 21
sort)/22xj

sort can be considered
as a smooth variabley5y(x,t). One can rewrite the Hamil-
tonian in Eq.~1! in terms of the continuous variabley(x,t)
and prove that the solitonic nonlinear excitations propaga
with a constant velocityy5y(x2vt) indeed exist in the sys
tem.

We have found that such solutions exist only for partic
densities which are below a critical density%crit51/a0crit

5A2/s. For the densities higher than the critical one t
width of the excitations reduces to a single-particle scale
the smooth nonlinear excitations cannot exist. Under t
condition the liquid state@the plateau in Fig. 3~a!# almost
disappears and a transition between solid and gas ph
goes directly through a ‘‘sublimation’’ process. Numeric
studies of the nonlinear solutions show that they have pr
erties of ‘‘quasiparticles.’’ They propagate in both directio
practically without a loss of energy@see Fig. 1~c!# and col-
lide with each other. Interactions between different types
excitations produce an intensive energy exchange in the
uid state that leads to the most efficient thermalization of
system in this state.

Heat conduction.The proposed system provides a pos
bility to simulate kinetic properties of classical low
dimension systems@4#. As an example we consider a prob
lem of heat conductivity. For this purpose the system in E
~1! is coupled to the heat reservoirs placed at the wallx
50 and x5L. The temperatures at the left and the rig
walls are given byTl andTr (Tl.Tr), respectively. When a
particle collides with a wall at temperatureTl ,r , it is re-
flected back with a velocity chosen from the distributio
f (v)5(uvu/Tl ,r)exp(2mv2/Tl,r). To calculate a temperatur
profile we evaluate time averages as follows: we divide
interval L into a set of equal cells,Xs , s51, N21, with a
length DX5L/N. In Fig. 4 we show the local temperatur
distributionT(x)5^vs

2&/2 found for different thermodynamic
phases of the system in Eq.~1!. Here ^vs

2&/2 is an average
kinetic energy of thes cell and^ & denotes a time averaging
s denotes the location along the interval and corresponds
continuum description tox. In the gas limit the temperatur
profile exhibits a wide plateau which is typical for a ballist
mechanism of conductivity~Fig. 4, open circles!. In this case
the heat transfer is determined by flying particles. In t
opposite, solid-state, limit we also find ballistic conductivi
which is determined by propagating quasiparticles: solito
excitations and phonons~Fig. 4, open circles! @4#. In the
liquid state theT(x) has a strong nonlinear profile with
substantial nonzero slope that is a result of intensive sca
ing processes and energy exchange between all dynam
modes~Fig. 4, filled circles!. The local density of particles
1-3
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r(x)5^ns&/N, wherens is the average number of particle
per cell, also demonstrates a nonlinear profile, which is co
plimentary to the temperature profile. The observed varia
of r(x) can be explained by an accumulation of slow p
ticles at the cold end and by fast escape of flying partic
from the hot end. A relation between temperature and c
centration gradients, which is usually assumed for a ma

FIG. 4. Local temperature profilesTi for e/A510 ~open
circles!, e/A51 ~filled circles!, ande/A50.1 ~triangles!; N5100,
Tl52, Tr50.1. Inset shows local temperature profile and lo
density of particle, calculated forTl50.1,Tr52, N5128, e/A
50.25. Lines obtained by averaging over 100 realizations afte
transient timet5104.
f

-

h-

s

re
.

04210
-
n
-
s

n-
o-

scopic system close to equilibrium, naturally emerges fr
the proposed Hamiltonian model.

Our calculations show that the proposed system can
used as a model forthermoenginethat transforms heat into a
directed motion. For this purpose the ensemble of partic
should be coupled to a third body, i.e., a cargo. Slow p
ticles moving from the cold end affect the cargo strong
than fast particles that move from the hot end. This asymm
try leads to a directed motion of the cargo. Another exam
of transformation of thermal energy into a directed motion
a production ofelectric currentdue to temperature differ
ences of thermostats. To simulate this phenomenon we h
considered two kinds of particles with different masses a
opposite charges. When the difference in the masses o
particles is large enough the light ones can fly ballistica
and transfer current while the heavy ones remain immob

In summary we have introduced a simple dynami
model that establishes the relationships between microsc
properties of Hamiltonian systems and ‘‘macroscopic’’ the
modynamical and kinetic phenomena. Depending on the
ergy the model exhibits three well-defined states and a w
spectrum of kinetic phenomena.
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