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From deterministic dynamics to kinetic phenomena
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We investigate a one-dimensional Hamiltonian system that describes a system of particles interacting
through short-range repulsive potentials. Depending on the particle mean entagpystem demonstrates a
spectrum of kinetic regimes, characterized by their transport properties ranging from ballistic motion to local-
ized oscillations through anomalous diffusion regimes. We establish relationships between the observed kinetic
regimes and the “thermodynamic” states of the system. The nature of heat conduction in the proposed model
is discussed.
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The question of how statistical laws emerge from micro-by weak interactions. In the opposite low-energy liraiA
scopic dynamics has been a subject of interest for a long timee1, the system forms a crystal lattice with a constagt
[1]. Studies of relatively simple dynamical systems provide a=1/g. In this solidlike state each particle oscillates at the
link between deterministic dynamics and diffusion phenom-minimum of potential well formed by its neighbors. In the
ena[2,3]. In particular, a number of recent dynamical modelsgas phase the system is uniform while in the solid state it has
aim at understanding the necessary and sufficient conditiors discrete translational symmetry with a lattice constajt
for a system to obey the Fourier heat conduction [@  According to Kolmogorov-Arnol’d-Moser theorem, in both
These examples cover only a part of general problem of hovimits, the system exhibits an ordered dynamical behavior in
kinetic and thermodynamic properties emerge from dynama region of positive measure in phase spfgke Due to a
ics at the atomic scale. difference in symmetries of the ordered states one can expect

In this paper we propose a many-particle Hamiltonianthat a transition between these two states with the change of
model which exhibits a wide range of mass and energy transe will occur through a mixed disordered state.
port regimes, and allows to establish relationships between To study the dynamics of the system in E#). we use the
microscopic properties and thermodynamical and kinetidollowing algorithm: At the beginning we put all particles at
phenomena. We demonstrate that kinetic properties of than equal distance, from each other and give them a kinetic
system are determined by one controlling parameter, whicknergy according to the Maxwell distribution. After that we
iS a mean energy per a particle, Varying e one can cover rescale velocities of the particles in order to get a total en-
the whole spectrum of diffusion regimes, from ballistic mo- ergy equal tdNe. Then, for each time step, we integrate the
tion to “frozen” states through anomalous diffusion regimes. corresponding dynamical equations using a central difference
We show that the observed kinetic regimes are strongly resymplectic schemg5]. To extract an information on the
lated to the “thermodynamic” states of the system whichstructure and dynamics we introduce also a sorted array of
change from a “solid” to “gas” phase as the parameter particles,{x;°"(t)}, where particles are renumbered accord-
increases. ing their actual instantaneous positidn} =sort({i}).

The model describes a systemMdtlassical particles each  |n order to illustrate a nature of excitations in the system
characterized by coordinatg and the conjugate momentum we show in Fig. 1a) a time evolution of energy distribution
pi . The particles interact through a repulsive short-range pomitiated by a local perturbation at tinte=0 that had a form

tential according to the following Hamiltonian: of a kicked group of a few central particles. Here particles
N N with high and low instantaneous velocities are displayed by

H(x;.p Z p_ ﬁ E el (-x) %07 (1) light and dark colors, respectively. The light regions are or-

Pi) =1 2 i=1 ' ganized into lines which correspond to excitations propagat-

ing along the system. Three types of excitations with differ-

whereA is the strength of interparticle interaction andis  ent group velocities, which are given by an inverse slope of
the width of repulsive core. The particles are located on anhe lines, can be distinguished: flying particles, low-energy
interval of lengthL, and periodic boundary conditions are phonons, and nonlinear solitonic excitations which are inter-
applied. The mean energy and density of particles are definagiediate in energy between them. The first dynamical mode,
ase=E/N and ¢ =N/L, respectively, and the mass of par- flying particles, dominates in the gas sta¢éA>1. Nonlin-
ticles m=1. Although Eq.(1) describes a one-dimensional ear excitations and phonons play the main role in the oppo-
system of particles we alow the possibility that the particlessite solid-state limit/A<1 [Fig. 1(c)]. An energy exchange
can pass through each other. This leads to a spectrum dktween different modes is most effective in a “liquidlike”
dynamical behaviors and mimics higher dimensions. Withouktate, which corresponds te/A~1. Interactions between
assuming particle’s transparency the model reduces to th@odes can lead, for example, to a transformation of flying
standard picture discussed in textbooks. particle into solitonic excitatiofisee the circle in Fig. (B)]

In the high-energy limite/A>1, the system in Eq(l)  or to “burning” of flying particle from a sea of phonons and
behaves as a gas of freely flying particles, slightly perturbechonlinear excitationgsee the circle in Fig. (b)].
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FIG. 1. (a) Time evolution of the energy distribution initiated by

kicking of few central partic_les_, for the system in E@.) (N_ FIG. 3. () The dependence of the order parameter, @J. ¢
=128¢/A=0.25). The circle indicates a collapse of flying particle (black circles and the diffusion exponent, Eq.(5) (open circles

into a nonlinear excitation(b) The same system after time  ained by fitting of the mean squared displacemeri(t)), for a
=5000. The circle indicates a birth of two flying particles from the calculation timet=10%; The histograms for a duration of a single

excitation sea(c) The set of propagating solitons for the system in flight, W, (t), for (b) e/A=2 and(c) e/A=10; N=512. Uncer-
Eq. (1) for e/A=1. tainty in « in the intermediate range is about 10%.

In order to describe quantitatively a structure of different It is natural to assume that in the intermediate, liquid state
“thermodynamic” states arising in the system, we introducethe PDF® (£) can be presented in the form
a reduced distance for a sorted set of particlés,
=[x}°"(t) = x?°(t) — a,], and calculate the probability den- D(£) = Psoiig(§) + Pgad &), ()]
sity function(PDP ® (&), —ag<&é<L/2 (see Fig. 2 In the
low-energy limit the PDFD (&) is governed by a peak near
the point¢=0, which corresponds to a crystal latti@right
inset in Fig. 2. In the gas limit the PDF scales &see left
inset in Fig. 2

where®dio(£) (a dashed line in Fig.)2and® . (§) (a thin

line in Fig. 2 describe a solid-state and gas contributions
correspondingly. The solid and gas contributions can be iso-
lated from the net PDF by fitting its asymptotics to the ex-
ponential distribution, Eq(2), at negative and large positive
¢, Then Eq.(3) allows to introduce the order parameter,
O (&) ~e €730, (20  which presents a fraction of solid phase

Figure 3a) shows a dependence of the order paraméter
on the energy density. It exhibits a phase transition from
the gas to solid state agA decreases. The plateau @A
~1 indicates the presence of the third, mixed state that can
be associated with a liquidlike phase. Below we consider
regimes of mass and energy transfer which correspond to the

FIG. 2. The PDF® (&) calculated for the liquid statéy=64, dlﬁergnt therr_nodynam!c states. . _
A=1,€=0.25,0=1, c=1. The thin line shows fitting teb 4, £) . Flying partcheS.Partches can fly only when their vglom-
in Eq. (2). Dashed line correspondsday,ig(§) =1— ®4.4¢). Left  ties are higher than a threshold valwe,~ \2U 1,4, Which
inset shows PDRD (&) in gas state ¢ A=10) and the right inset is determined by the height of the effective potential created
corresponds to solid state/(A=0.1). by neighboring particles. The latter can be estimated as a
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barrier in a periodic lattice, formed by particles in the solid <1 [11]. Linearization of the equations of motion for the
state,U = A{1/2— exd — (ay/0)?]}. Hamiltonian in Eq. (1) gives the elastic constan€
Each particle dynamics can be characterized by the meag(ZAloz)[l_2/(09)2]8—1/(09)2’ which contains all infor-

squared displacemefk?(t)), which in the long-time limit 240 on the phonon spectrurl]. This approximation is
follows not valid for nonlinear excitations, where particles can
2 N strongly deviate from their equilibrium positions. However,
()~ ©) in the case of smooth excitations the displacements of par-

e . icl ith h nding middl ints chan
where a=1 for normal diffusion. All processes withk# 1 ticles with respect to the corresponding middie ps?,,t tsa%da ge

are known as anomalous diffusi@,8], being subdiffusion SIOWIY with particle Solﬂtmbiir'tn the g’gited array, i
for 0<a<1 and superdiffusion for £ a<2. the differencey; = (x;;+xj=1)/2—x;™" can be considered
The numerical results presented in Figa)learly show ~as & smooth variablg=y(x,t). One can rewrite the Hamil-
three different dynamical regimes. tonian in Eq.(1) in terms of the continuous variablgx,t)
(1) Absence of diffusion foe/A<1 (solid phasg In this and prove that the solitonic nonlinear excitations propagating
case particles perform small oscillations around the minimavith a constant velocity =y(x—uvt) indeed exist in the sys-

of the potential, and as a result=0. tem. . _ _
(2) A ballistic regime witha=2 for e/A>1 (gas phase We have found that such solutions exist only for particle
(3) Normal diffusiona=1 in the liquidlike state where densities which are below a critical densigy;= 1/aqcrit

elA~1. =\/§/cr. For the densities higher than the critical one the

It should be noted that the latter regime exists for a finitewidth of the excitations reduces to a single-particle scale and
interval of e. For the values o€ Corresponding to gas_"quid the smooth nonlinear excitations cannot exist. Under this
and liquid-solid transitions we have found regimes ofcondition the liquid statdthe plateau in Fig. @] almost
anomalous diffusion, namely a superdiffusion in the first casélisappears and a transition between solid and gas phases
and subdiffusion the second ca$ég. 3) [9]. goes directly through a “sublimation” process. Numerical

In the case of superdiffusion each particle performs bottstudies of the nonlinear solutions show that they have prop-
flights and trapped oscillations, randomly switching betweergrties of “quasiparticles.” They propagate in both directions
these two dynamical moddsee Figs. () and ib)]. We  practically without a loss of enerdysee Fig. 1c)] and col-
have obtained the histogram for a single flight titfg (t), lide with each other. Interactions between different types of
accumulating the lifetime and length during the interval €Xcitations produce an intensive energy exchange in the lig-
where the sign of the partide Ve|0city is fixed. It shows anuid state that leads to the most efficient thermalization of the
asymptotic power law decalFig. 3b)] W (t)~t~?, with ~ System in this state. _ _
the exponenty~2.5 for the gas phase{A=10) that corre- ~_Heat conductionThe proposed system provides a possi-
sponds to superdiffusion ang3 for the high-energy edge b!llty tq simulate kinetic properties of cla_ssmal low-
of the liquid phase, a¢/A=2, that corresponds to a transi- dimension systempd]. As an example we consider a prob-
tion to normal diffusion regime. The related PDF has thel®m of heat conductivity. For this purpose the system in Eq.
same power behavior. We note that the flying particles do notl) is coupled to the heat reservoirs placed at the walls
have a constant velocity. =0 andx=L. The temperatures at the left and the right

The subdiffusion, which has been found in the transitionwalls are given byl andT, (T,>T;), respectively. When a
region between solid and liquid states, corresponds to shoRarticle collides with a wall at temperatuf® ,, it is re-
random jumps of the partides interrupted by |0ng trappingﬂected back with a VelOCity chosen from the distribution
events. At low energies the probability of strong fluctuationsf (v)=([v /T, )exp(-mu?/T,;). To calculate a temperature
which can result in a particle escape from the potential welProfile we evaluate time averages as follows: we divide the
becomes very low. This leads to anomalously long trappindnterval L into a set of equal cellXs, s=1, N—1, with a
of particles. The particle motion becomes subdiffusive wherdength AX=L/N. In Fig. 4 we show the local temperature
the PDF of trapping times has a power law asymptoticdistributionT(x)=<u§)/2 found for different thermodynamic
W, (t)~t~ 172 with <1 [8]. In this case the diffusion ex- phases of the system in Efl). Here(vZ)/2 is an average
ponenta in Eq. (5) equalsB, a=B<1. The subdiffusive kinetic energy of thes cell and( ) denotes a time averaging.
dynamics can be quantitatively described using a continuous denotes the location along the interval and corresponds in a
time random walk approadi8]. It should be noted that fly- continuum description te. In the gas limit the temperature
ing events are expected in all dynamical regimes. Howevemprofile exhibits a wide plateau which is typical for a ballistic
what distinguishes among phases are the distributions ahechanism of conductivityFig. 4, open circles In this case
flight times or segments. the heat transfer is determined by flying particles. In the

Solitary excitations and phononfn the low-energy re- opposite, solid-state, limit we also find ballistic conductivity
gime the system tends to build a crystal-type structure. Localvhich is determined by propagating quasiparticles: solitonic
energy fluctuations can create here only relatively smoottexcitations and phonon&-ig. 4, open circles[4]. In the
nonlinear excitations as well as small-amplitude phonons. Itiquid state theT(x) has a strong nonlinear profile with a
the phonon state particles are mainly localized in the middlesubstantial nonzero slope that is a result of intensive scatter-
point between two nearest neighbors, and the varigble ing processes and energy exchange between all dynamical
introduced earlier can be used as a small paramétéa,  modes(Fig. 4, filled circles. The local density of particles,

042101-3



BRIEF REPORTS PHYSICAL REVIEW B9, 042101 (2004

—_

scopic system close to equilibrium, naturally emerges from
the proposed Hamiltonian model.

Our calculations show that the proposed system can be
used as a model fahermoenginghat transforms heat into a
directed motion. For this purpose the ensemble of particles
should be coupled to a third body, i.e., a cargo. Slow par-
ticles moving from the cold end affect the cargo stronger
than fast particles that move from the hot end. This asymme-
try leads to a directed motion of the cargo. Another example
of transformation of thermal energy into a directed motion is
0 20 Coordinate, x 80 a production ofelectric currentdue to temperature differ-
ences of thermostats. To simulate this phenomenon we have
considered two kinds of particles with different masses and
T,=2, T,=0.1. Inset shows local temperature profile and IocaloppOSIte charges. When the difference in the masses of the

density of particle, calculated fof,=0.1T,=2, N=128, /A particles is large enough the light ones can fIy_ngIistica_IIy
=0.25. Lines obtained by averaging over 100 realizations after gnd transfer current while the heavy ones 'remaln 'mmop'le'
transient timet = 10°. In summary we have introduced a simple dynamical
model that establishes the relationships between microscopic
) ) properties of Hamiltonian systems and “macroscopic” ther-
p(x)=(ng)/N, wheren is the average number of particles ogynamical and kinetic phenomena. Depending on the en-

per cell, also demonstrates a nonlinear profile, which is comgrgy"the model exhibits three well-defined states and a wide
plimentary to the temperature profile. The observed variatioRpectrum of kinetic phenomena.

of p(x) can be explained by an accumulation of slow par-

ticles at the cold end and by fast escape of flying particles Financial support for this work by grants from the Israel
from the hot end. A relation between temperature and conScience FoundatiofiGrant No. 573/0p and BSF is grate-
centration gradients, which is usually assumed for a macrcfully acknowledged.

o Temperature, T(x)

FIG. 4. Local temperature profile§; for e/A=10 (open
circles, e/A=1 (filled circles, and e/A=0.1 (triangleg; N=100,
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