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Abstract

Phase ordering kinetics with a non-conserved scalar order parameter is studied near a lability boundary of a first-order
phase transition. A large-scale structure of this field is found to appear. Under some conditions it is analogous to a fractal
structure in the critical region of a second-order transition. The chains and localized groups of new phase nuclei are
generated by the maxima of the order parameter density. The results are compared with fluctuation inducing of continuous
phase transitions predicted in the framework of the renormalization group (RG) approach. © 1998 Published by Elsevier

Science B.V.
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1. Fluctuations and nucleation

One of the principal problems of phase transition
theory is the structure of critical nuclei. Traditionally
it was defined as spherical with some diameter deter-
mined by the balance between the energy of the or-
dered phase and the surface energy [1-3]. This de-
scription is quite appropriate for analytical thermody-
namics based on a transformation of the initial dy-
namical problem to the study of collective continuous
fields. Modern computer techniques make it possible,
in principle, to study the many-body dynamical prob-
lem directly [4-8]. Recently, direct computer simu-
lations of the phase separation and spinodal decom-
position were made [9-12]; long dipolar chains were
obtained numerically [ 13-15], and the crystallization
of molecular liquids [ 16,17] and the crystallization of
the vortices in 2D turbulence [ 18-20] were simulated.

Nontrivial results of dynamic simulations stimulate

the study of analog structures based on continuous
field analysis. Some analytical estimations can be per-
formed on this intermediate level. Numerical simula-
tions give a better understanding of the phenomena.
In this Letter we concentrate on the phase ordering
kinetics with non-conserved order parameter that is
described by the generalized Ginzburg-Landau equa-
tion [21-23],

dp(r,t) [t = —y(8H[p(r,1)]/dp), (1)

where H is the Ginzburg-Landau functional; v is a
positive kinetic coefficient, ¢(r, ¢) is the order param-
eter field. In recent works [24-29] the model (1) was
used to study nucleation and growth of the new phase
domains in different systems with the following gen-
eral Ginzburg-Landau functional,
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Hlg(r)] = /ddr[(V¢(r))2/2+f(<o(r))]
=/ddrF(cp(r)). (2)

The local free energy density for different problems
(for example, for binary mixtures, axial magnets,
martensites, etc. [4-8,30-32]) may be reduced to
two standard catastrophes [33],

fle(r)) =19(r)? /2 — 2ae(r)* /3 + Be(r)*/4
and
fle(r) =To(r)?/2 — ap(r)*/4+ Bp(r)®/6

for the unique (scalar) combination ¢(r) of the
order parameter components. At positive constants
7, @, B, and 78 < &* any function f(¢(r)) has
a metastable minimum at @(r) =¢o=0 and a
global one at ¢, =[a+ (@®—78)'/?1/28 and
@2 = [a+ (a® — 7B8)"/?]/ B, respectively.

The nuclei appear from noise, £ (r,t), of the fluc-
tuations. In the kinetic approach it is generated by a
random term in Eq. (1),

dp(r,t)/dt=—y(8H[@(r,1)]/8¢) + {(r,1),

(¢(r,1))=0,
(E(r,0)(r', 1)) =2D8(r —r')8(t —1t'). (3)

Different versions of the modified equation have been
used (see Refs. [21-32,34-42]). In particular, it was
found [24,25] that critical nuclei appear from low-
dimensional folds of the density ¢(r). Their maxima
may be essentially lower than the equilibrium order
parameter ¢..(r). In this sense, the Kinetic processes
at second and first-order transitions are close to one
another. At T < T, in both cases a new phase grows
in the form of ordered domains inside the disordered
matrix [41,42].

In the critical point of a second-order transition a
large-scale structure of the fluctuating field is gener-
ated [43,44]. Its description [43] is based on the free
energy renormalization by the fluctuations. The effec-
tive free energy fesr(@(r)) is given by a fixed solu-
tion of the RG equation [45-47]. In lowest approxi-
mation, the local part of the renormalized functional

Hlg] = / Gy Dle()*/2+ / dr fesr(p(r))
q
= Hol @) + Hil¢) (4)

can be used in the kinetic equation as an effective free
energy ferr(@(r.1)),

dp(r,1)/at=—y[Ap(r,1) — dfer(@(r,1))/d¢]
+(r ). (5)

In the fixed point of the RG equation the local density
for fer(@(r)) satisfies the RG equation,

dferr(@) — (d — 2)@ldferi(@) /]2
+ 82 fetr (@) /30” — [ fers(@/ ) 1> = 0,

where d is the space dimensionality [48-52]. This
cannot be reduced to a finite number of terms in the ex-
pansion and has asymptotes ferr(@) oc @*/2 + const
at ¢ — oo [47], instead of what is usually supposed,
feit(@) x ¢*/2 + o(¢?). This anomalous behavior
leads to long-living mesoscopic excitations in the sys-
tem and generates a large-scale (fractal) structure of
the fluctuating field in space. This structure is reflected
in fine structures of the two-point correlation function

G(r—r') ={p(r)e(r)) (6)

and its Fourier transform G(q) = {¢(g@)¢(—q)). In
the critical point G(g) has a fractal structure at small
momenta [44], which can be treated as the physical
reason for the anomalous dimensionality described by
the Fisher critical exponent G(g) x g°~7 in the ana-
lytical theory.

The fluctuation structure in the critical region ex-
ists at {(r,t) # 0 only. It drifts with time and does
not lead to an ordering phase. However, it may be
treated as a stationary structure, because a universal
correlation function G(g) = (¢(g)@(—q)) o< g*7
appears in this state. Besides, the time evolution of
the averaged functional of the probability density.
wle] = exp(—Hi[¢]), coincides with a simple scale
transformation [43]. This means that a scale-invariant
structure develops in time [53].

Substitution of f(¢) by fer(¢) is equivalent to
partially taking account of microscopic fluctuations by
integration of the partition function over small mo-
menta. So, a kinetic simulation starts from intermedi-
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ate (mescscagic | scates. {¢ allaws one (0 study numer-
ically even fine fluctuation effects (like the generation
of nonzero 7 {4475, A rougher effect of fuctuation
inducing of discontinuous phase transitions was ex-
tracted from fhe Xinencs directy 523 § withom previ-
ous renormalization of the functional by the RG pro-
cedure). In this Letter the opposite effect of inducing
of a continuous phase transition by the fluctuations
near the spinodal is presented.

2. Large-scale structure near spinodal

With numericat simutation the drift of the structure
is directly visible. The nuclei of the new phase ap-
pear, disappear and move in space. It corresponds to
the simple picture of very large fluctuations growing
in a very smooth fe(¢) energy minimum at ¢ = .
Some of these pictures were presented in the figures
of Ref. [43]. Analogous pictures were presented also
for the critical nuclei at the first-order phase transi-
tion [24,25]. In the second case, two characteristic
energies should coincide to start the nucleation. They
are the barrier in the free energy dewermined by the
difference 7 = (T — T.) /T, and the absolute value of
the temperature 7 weduich <5 proponsnad @ W e
sity of the noise T ~ D [2]. In thermodynamics the
barrier disappears at the lability boundaries [1} (so-
called overcooling and overheating spinodals). In ki-
netics, however, the metastable state can lose its sta-
bility at a nonzero barrier. This occurs even in a pure
homogeneous system ( without impurities, etc.) Fluc-
tuations by themselves produce the nucleation centers.

Fluctuation inducing of a continuous phase
transition (and tricritical points) has been pre-
dicted many years ago in the framework of the
RG approach [54,55]. From an analytical point
of view the maximum of the free energy density
f(@) = f(@(r)) disappears due to the renormaliza-
tions coming from the higher nonlinear terms in the
expansion f(@) = 7¢*/2 — ap*/4 + Be®/6 + ...
This was accounted in a loop approximation and
studied in different contexts [56-60], in partic-
ular, using an effective “temperature conductiv-
ity equation”™ &fes/80 = 3° fer/d¢®, where 6 is
the value of the one-loop correction [57]. Us-
ing f(@)=7¢*/2—ap*/4+Be®/6+... as an
“initial condmon” one tan wrie NS genera) sow-

tion (w(@:?) = 27w} 7 {du exg(~(u —
®)?/20]1 f(¢) at arbitrary 6. One can prove that
e maxima and minima of te effective furction
Sest(¢; 8) are suppressed on increasing of the # value.

Oualiziively, The same  Phenomenon  oocurs
in the presence of odd terms in the function
f(@) =19° /2 — ap’ /3 + Bp*/4. However, in this
case the density of the fluctuating field ¢ aver-
aged over the system, (¢}, does not equal zero. K
gives a main impact to the renormalization of f(¢).
Let us estimate this impact. For a stationary pro-
cess the average (@) changes adiabatically slowly,
(8H[@(r,1)]/8¢)|p=(py — 0 [25]. One can ex-
ctude this regular part from the kinetic equation
¢ — ¢+ (¢) and write the following equation for
the new field,

dp(r,t)/dt=—y(SH[@(r, 1) +{g)]/8@) + {(r, 1)
~Y(AQ(r, 1) = Tefr + Qerr” — Bt +...)
+{(r, 1), (7)

with the effective parameters

Teit = T — 20{p} + 38(0}°, e = a — 38(e),
Beit = £- &)

The two parameters 7.¢ and aer have oppo-
site dependences depending on the (¢) value.
However, at Beg =B =const =1 the qualitative
structure of the trial function f(@) is deter-
mined by the unique parameter 7. At appropri-
ate normalization of the order parameter one has
flo)=1¢°/2 — (74 1)¢*/3 -+ ¢*/4. This corre-
sponds to the equation

dp(r,t)/ot=y(Ap(r.t) —@(¢ —7)(¢—1))
+{(r,1). (9)

Using the notations @, = 7er and @ + @2 = Ao,
one can rewrite Eq. (7) in the same form,

dp(r,1) /ot = y(Ap(r,1) —eip(p~¢1 [ @2) (p—1))
+4(r.1). (10)
The factor ¢3 can be excluded from this equation by

a renormalization of the coordinates and time. As a
yesm)y, Yoe redanon g jpy Pdays he same rode as e
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Fig. 1. Local density of free energy. (a) Trial free energy f(¢); (b) the same energy renormalized by the numerically found fluctuation
corrections ferr(¢). Complete energy densities F(w(r)) = (Ve(r))?/2+ f(e(r)) and Fur(@(r)) = (Vo(r)?/2 + fur(e(r)) are

shown also in both figures.

value 7 in Eq. (7). For the lowest nontrivial order (up
to o({¢)) terms) one has

<P|/<P2
= [Qefi— (@2 —4Teir) /21 [ [ et + (@l —47esr) /2]
~1—2(p) +0o({g)?). (11)

When the system goes to a spinodal, the value (¢} in-
creases and the positive value of ¢, /¢, goes to zero.
The maximum between stable and metastable minima
disappears. This can be treated as a qualitative mani-
festation of fluctuation induced criticality in the sys-
tem.

Eq. (11) gives an estimate only. This renormaliza-
tion should appear automatically in numerical calcu-
lations with a trial form of the free energy and a suffi-
cient volume of data (a numerical grid with 512 x 512
points is used actually). In its turn, it is interesting to
check the above analytical estimates by substitution
of the numerically found (¢) value in the formulae.

The results of the calculations are summarized in
Figs. 1-5. In Fig. 1 the local density of the trial free
energy (a) and the same energy renormalized by the
numerically found fluctuation corrections (b) are pre-
sented.

The noise intensity ({(r,8){ (7', t)) = 2D8(r ~
r'y8(t—1") for this figure is taken to suppress the max-
imum between global and local minima of feg(¢) for
the first time. This noise is close to critical (D =~ D,)
for the nucleation. At the same noise the total energy

density F(¢(r)) =(Ve(r))?/2+ f(e(r)) has a
very small but nonzero maximum. This is quite visi-
ble in both Fig. 1a and Fig. 1b. This maximum comes
from a gradient term (V(r))?2 /2 and exists due to
a nonuniform distribution of ¢(r) in the critical nu-
clei [25]. As a result, the nucleation does not start at
the noise suppression maximum of the local fu(¢).

The space distribution of the order parameter
density ¢(r) is given by the structure of the corre-
lation function G(r) = (@(r)¢(0)). It is shown in
Figs. 2a-c. Two structures of G(r) are presented. First
the function is shown for ¢ = 0 in Fig. 2a. It appears
just with the “switch on™ of the noise. The second
plot (Fig. 2b) is presented at 1 — oo and D ~ D.. At
¢t — 00 system goes to a stationary state with a large-
scale fluctuation structure. The correlation function
slowly decreases in this state, G(r) ~ 1/r. To test
this behavior the function G(r) is plotted in a double
logarithmic scale also (Fig. 2¢).

The large-scale structure of ¢(r) is nonuniform at
D =~ D.. The gradient energy (Ve(r))?/2 prevents
a nucleation from this structure when the local barrier
is suppressed completely. However, the impact from
(Ve(r))?/2 decreases with expansion of the struc-
ture, ¢(r), in space. This process, in its turn, takes a
time increasing with the scale of the structure. Owing
to this, one can expect for infinite scaling growth of
the structure at D = D, instead of standard nucleation.

Repeating the numerical experiments at different
values of D one can localize the value of the critical
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Fig. 2. Space dispersion of the correlation function G(r)
b is plotted in a double logarithmic scale.
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Fig. 3. The time dependences for the value (¢} at different ampli-
tudes of the noise D are presented in a double logarithmic scale.
Curves 1 and 2: D> D¢; curve 3: D 2> D.; curve 4: critical
regime at D = D.; curve 5: saturation case D < De.

noise, D = D.. At quite strong noise, D > D¢, nucle-
ation occurs and the volume of the ordered state in-
creases linearly with the time. This fact is illustrated
by the curves 1 and 2 in Fig. 3. The time dependences
for the value (¢) at different values of D are pre-
sented here in a double logarithmic scale. At D > D,
a crossover (curve 3) to another behavior occurs. This
corresponds to the formation of a large-scale fluctua-
tion structure before nucleation.

Curve 4 corresponds to the critical regime at
D = D.. The scaling behavior () ~ t'/? is found
for this regime. The last regime is analogous to the

= {@(r)e(0)). (a) At t=0; (b) at r — o0o. (¢) The same function G(r) as in

already mentioned development of the scale-invariant
structure at the critical point. In both cases the renor-
malized free energy is extremely flat.

As a result domain growth occurs with the ex-
ponent 1/3 instead of 1/2 as expected for systems
with non-conserved order parameter [61,62]. Growth
here occurs through lowering of the gradient en-
ergy (Ve(r))?/2 only. It is qualitatively similar to
the systems involving a conserved order parameter
where the asymptotic exponent 1/3 is found (see, for
example, Ref. [9] and references therein).

Finally, at D < D, (curve 5) saturation occurs. The
beatings of the small value of {¢) look more important
in comparison with the previous curves because the
same logarithmic scale was used for all these plots.
The impact of the fluctuations d¢ here is comparable
to the value (¢) itself and lowers the accuracy. It is
not very essential when one deals with the saturation
regime. But, in principle, more averaging is needed in
this case.

Fig. 4 presents the space distribution of the fluc-
tuating field near the spinodal. The order parameter
density is shown by the intensity of gray. White cor-
responds to the current maximum value of the order
parameter

- 7821 /28.

A fragment (256 x 512 grid points) of the total struc-
ture is shown in the plot.

When the amplitude of the noise is close to, but
slightly larger than the critical one, D > D, the inten-

¢Ymax ~ 0.3¢p; =03[a + (aZ
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X
Fig. 4. Space distribution of the fluctuating field near the spinodal.
The order parameter density is shown by the gray-scale. A white
color corresponds to the current maximum value of the order
parameter, omax = 0.3+ = 0.3[a + (a? — 78)1/2) /2.

sive nucleation begins in a few places of space which
have the highest current local density of the order pa-
rameter. As a rule these places are located near long
(low-dimensional) density folds [25,44]. This pro-
cess produces local groups and chains of the nuclei.
Fig. 5 presents an example of such a group of nu-
clei. The gray-scale map is normalized to the equilib-
rium value of ¢ = ¢.. The relation between the mag-
nitudes of the critical nuclei (¢, = 0.3¢. ) and the
basal value of (¢} in the fluctuation structure is seen
directly from the two presentations (3D surface and

100 \ -
120 20 40

Fig. 5. An example of a local group of nuclei generated at D 2> Dc.
The relation between the magnitudes of the nuclei and (¢) is
shown by a combination of the 3D surface and the 2D map in
the same figure. The gray-scale is normalized to the equilibrium
value of ¢ = ;.

2D map, respectively) for the order parameter density
p(r) =e(x,y).

In conclusion, we present the numerical simulations
which provide evidence for the similarity between the
ordering kinetics near the lability boundary of a first-
order phase transition and the generation of a fractal
large-scale structure of the fluctuating field in the crit-
ical region of a second-order transition. It was found
also that the chains and localized groups of new phase
nuclei are generated conjointly on the base of this
structure from density folds of the order parameter.
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