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Abstract

Artificial structure of a plate with elastic fibers interacting with rough fractal surface by Van der Waals forces is simulated numerically to find
an optimal relation between the system parameters. The force balance equations are solved numerically for different values of elastic constant
and variable surface roughness. An optimal elasticity is found to provide maximum cohesion force between the plate and surface. It is shown that
high flexibility of the fibers is not always good to efficiency of the system, artificial adhesives must be made from stiff enough polymers. If the
ellasticity is close to an optimum, the force is almost constant at a wide interval of the surface roughness. It is desirable to make system adaptive
to wide spectrum of applications.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently a great attention has been paid to dry adhesion
which takes place at nano-scales and is relevant for some
biological objects [1–7]. Very important theoretical and ex-
perimental studies have been performed in order to gain a
deeper insight into these questions. It was found in particu-
lar, that a foot of the gecko is covered by a layer of hair
(fibers). Each of these fibers branches out into about 103 thin-
ner ones. These smaller fibers end with a thin (5–10 nm) leaf-
like plates. The latter structures are already small enough to be
able to follow the surface roughness profile at almost molecular
scale.

Some success has been achieved to fabricate surface patterns
with polymers to mimic the structure of setae and spatulas in
gecko foot-hair [6–8]. However, these synthetic systems still
do not have properties comparable to natural ones. Very re-
cent novel artificial structures are also based on relatively hard
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materials like carbon nano-tubes or micro- electromechanically
produced ‘organorods’ [9,10]. These new structures show very
good adhesive properties.

The goal of this Letter is to simulate numerically artificial
structure of elastic fibers contacting with a rough fractal surface
by Van der Waals forces to find an optimal relation between the
system parameters. We show that there is an optimal elasticity
to provide maximum adhesion force and that to have a high ef-
ficiency the artificial adhesives must be made from stiff enough
polymers.

2. Model and simulations

Real foot-hairs move in all 3D directions. To simplify model
we will restrict the motion by the z-direction (which is orthog-
onal to the mean positions of two contacting plates) only. An
effective elasticity of the fibers in this case can be treated as a
combination of bending of the hairs with their extension un-
der Van der Waals force Keff ≡ K . Conceptual structure of
the simplified model takes a form shown in Fig 1. Black line
here presents a small fragment of fractal rough surface. The
surface is generated numerically according to the standard def-
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Fig. 1. Conceptual structure of the model. Black line presents a fragment of
rough surface. Gray lines schematically show elastic bonds.

Fig. 2. Combined potential of the elastic and Van der Waals forces shown at
varied distance A and elastic constant K ((a) and (b) respectively).

inition:

(1)z0(x) = (2π)−1
∫

dq c(q) cos
(
qx + ζ(x)

)
,

where c(q) = c0q
α and ζ(x) is random phase 〈ζ(x)ζ(x′)〉 =

δ(x−x′). Gray lines in Fig. 1 show schematically elastic bonds.
Generally speaking, second surface, to which the bonds are at-
tached, can be nonuniform too. However, from mathematical
point of view, one can include all the inhomogeneity to one of
the surfaces, without lose of generality. The potential connect-
ing each sole bond with the surface combines Van der Waals
and elastic interactions:

(2)UVdW = (
2/z6 − 1/z12)/12, Uelastic = K(z − z0)

2/2.

Corresponding forces are equal to FVdW = −∂Uw/∂z and
Felastic = −∂Uelastic/∂z respectively. Total potential is shown in
Fig. 2 at different values of the distance A = z0 (Fig. 2a) and
elastic constant (Fig. 2b). It is seen directly that in both cases
there are some regions of the parameters at which the poten-
tial has two valleys with comparable depth. Here and below we
measure all the energies, noise intensity and space scales in the
units of Van der Waals potential (which is normalized as it is
done in Eq. (2)).

Due to general reasons of physical kinetics one can expect
that at fluctuating parameters two comparable energy valleys
can cause jumps between alternative states of the system. The
randomness here is caused by the fractal surface z = z0(x), fiber
dynamics (transferred down to the nano-scales from macro- and
meso-motions of the system). It can be cause also by tempera-
ture fluctuations which are important in molecular scales.
Fig. 3. Sketch of the numerical solution. Gray lines show elastic forces for the
family of points placed in different segments of fractal surface. Bold and ordi-
nary black line correspond to Van der Waals potential and force respectively.

Fig. 4. Dependence of sticking force on the elastic constant obtained at different
roughness. Optimal values are marked by the gray circles.

Actual surface z0(x) is semi-fractal, it has some limited
spectrum of wave vectors and it standard deviation is limited
too: 〈(z0(x) − 〈z0(x)〉)2〉1/2 ∼ A, where A is “roughness”. The
fiber positions are distributed as well. It causes a distribution of
the equilibrium forces too. In zero approximation, one can ne-
glect an interaction between the bonds. The equilibrium in this
case is given by the balance of the elastic and Van der Waals
forces:

(3)FVdW = Felastic.

For the fractal surface one has to solve the Eq. (2) numeri-
cally. The solution is presented in Fig. 3. Gray lines show elastic
forces for the family z0 = z0(x). Bold and ordinary black lines
correspond to Van der Waals potential and force respectively.
The equilibrium forces and instant positions of each bond cor-
respond to the intersections of the gray lines with the thin black
one. One can integrate over these data arrays to find a de-
pendence of the sticking force on the elastic constant at given
roughness. This procedure has been performed for different dis-
tances between the surfaces. An equilibrium distance between
the surfaces is determined by the variation of the fractal struc-
ture and equal approximately to the constant A. Each value of A

determines a family of the relations between the sticking force
and elastic constant.

The result is shown in Fig. 4. Each force here has a max-
imum corresponding to an “optimal elasticity”. These points
are marked by the gray circles. Fig. 5 presents how the opti-
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mal adhesive force Fopt and elastic constant Kopt depend on
the amplitude A. The subplots (a) and (b) in this figure show
Kopt in linear and logarithmic scales respectively. Optimal force
Fopt is shown in the subplot (c). Despite of the fast asymptotics
1/z6 of the Van der Waals force, the optimal elasticity is found
to go down with surface roughness A growth much slower:
Kopt ∼ 1/A1.18. Moreover, if the elasticity is chosen close to
the optimal one the resulting adhesive force does not go to zero
even at formally infinite roughness: A → ∞.

Even at slow dependence Kopt ∼ 1/A1.18 the elasticity can-
not be chosen optimal for all the surfaces at once. In reality
adhesive force should fall down for variable roughness. How-
ever, there are many natural surfaces which have (at least) the
same fractal structure at levels close to the molecular scale. So,
it seems possible to choose the structure and elasticity of the

Fig. 5. Optimal elastic constants and adhesive forces calculated at varied surface
roughness A (subplots (a) and (c) respectively). Subplot (b) shows Kopt and A

in logarithmic scales.
“foot” quite close to the optimal one. In its turn, the existence
of real gecko foot, which is adaptive to wide variety of the sur-
faces, gives an ‘a posteriori’ support to the statement that such
an optimization is possible.

One aspect of the results shown in Figs. 4 and 5 looks even
contradictory to the intuitive expectations. The optimal elastic-
ity is close to unit when A ≈ 1. It leads to the highest sticking
force of the same order. In the units of problem it corresponds to
a characteristic distance and energy of the Van der Waals forces
(see Fig. 2 and note to Eq. (2)). In other words, to fit well to the
very smooth “slippery” surface and to create strong adhesion,
it is good to have rather stiff enough fibers than very soft ones.
Certainly, the ideal case A ≈ 1 corresponds to extremely small
roughness, which is comparable to the atomic scales and may
not exist in the reality. However, the final fibers of gecko’s foot
reach the scales close to 10 Nm, where it is really true. Very
likely, artificial system has to combine both features: soft tis-
sues on relatively high scales (to adapt preliminary large-scale
part of the surface structure) and hard short fibers to fit very last
micro- and nano-scales.

To complete the study, let us simulate above system in dy-
namical approach. The equations of motion can be written as
follows:

(4)∂2zj /∂t2 = −γ ∂zj /∂t + FVdW + Felastic + ξ(zj ; t).
Here we include random source ξ(zj ; t) and dissipation γ ∂zj /

∂t which simulate together thermal and dynamic impacts to the
system with an effective temperature Teff:

(5)
〈
ξ(z; t)ξ(z′; t ′)〉 = Dδ(z − z′)δ(t − t ′), D = 2γ kTeff.

When the parameters are close to the optimum total poten-
tial has two close minimums. Dynamic chaos and randomness
cause chaotic exchange of the bond states between the mini-
Fig. 6. Instant configuration of the z-coordinate and time-averaged histogram P(z)/Pmax(z) for the probability distribution (left and right subplot respectively).

Fig. 7. Gray scale maps for the histograms of z-coordinate distribution shown for different deviations 	z of the elastic plate from the rough surface. Dark gray color
corresponds to high probability P(z). Subplots (a), (b) and (c) correspond to K < Kopt, K ≈ Kopt and K > Kopt respectively.
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mums. This effective “exchange interaction” results, in fact, in
the strongest attraction between two surfaces. If the elastic con-
stant is too large, all the bonds are mainly attracted to the upper
plate and does not fit properly the rough surface. In opposite
limit they can fit the surface “ideally”. But, in this case they
do not attract well the upper surface (due to weakness of the
“springs”). Besides, one needs in a too long extension of the
bonds to detach them from the down surface.

Typical instant configuration of the z-coordinate and time-
averaged histogram P(z)/Pmax(z) for the probability distribu-
tion at optimal relation between the interactions are shown in
left and right subplots of Fig. 6 respectively. The numerical
experiment has been repeated at different roughness of the sur-
face (resulting in particular in different distances between the
plates 	z), and for three different elastic constants: K < Kopt,
K ≈ Kopt and K > Kopt. The results of the simulations are
summarized in Fig. 7. Each vertical cross-section in the gray
scale maps corresponds to a particular histogram P(z)/Pmax(z)

analogous to the shown in Fig. 6. Dark gray depicts higher
probability P(z). The subplots (a), (b) and (c) correspond to
K < Kopt, K ≈ Kopt and K > Kopt respectively.

3. Conclusion

A possibility to get optimal relation between the parame-
ters of structure in which the elastic fibers attached to a flexible
plate and contact with rough fractal surface by Van der Waals
forces is studied numerically. Balance equations for the forces
are solved and system dynamics is simulated numerically. The
results favor to a conclusion that some optimal elastic properties
of the fibers do exist. In contrast with an intutively expected, it
is found that the fibers must be stiff enough for good adhesion
properties of the system. In the optimum the structure made
with such fibers is expected to adhere to wide variety of the
shapes of fractal surfaces with enough adhesion forces.
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