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We study the kinetics of vortex formation in superconductors withd pairing. We find order-parameter
peculiarities and associated magnetic field maxima at intermediate stages of the evolution from the disordered
to the ordered state.@S0163-1829~96!09926-2#

INTRODUCTION

Traditionally, heavy-fermion systems are treated as sys-
tems withd pairing. Symmetry analysis gives the same su-
perconducting class for Y-Ba-Cu-O.1 Recent experiments2

and theoretical studies3 provide extensive evidence of this
fact for the high-Tc superconductors. It has been found that
these systems are type-II superconductors and they should
possess Abrikosov-like vortices. Static vortex structures have
been found experimentally in these systems. As a rule, these
structures may be described in the framework of a modified
theory of the vortex state, accounting for their strong anisot-
ropy, interaction between superconducting layers, quasi-two-
dimensional~quasi-2D! behavior, and the possible existence
of the multiquantum vortices.3

However, the formation of this state in kinetics may be
very nontrivial. A vortex ~more exactly, a pair of them:
‘‘vortex-antivortex’’! is an essentially mesoscopic structure.
It forms as a dissipative attractor during a kinetic process4

when the fluctuations of both components of the order-
parameter fieldc j interact with the~gauge! electromagnetic
field A.

For a traditional superconductor the order parameterc is
a two-component vector. It seems essential in our context,
because it leads automatically to the necessary topological
configurations from arbitrary fluctuations.4,5 In short, the
vortices arise at the points where the two linesc150 and
c250 intersect. The existence of such an intersection is typi-
cal for a two-component field. Formally, if the number of
components is larger thann52, the probability of mutual
intersection of all linesc j50 at the same~unique! point is
extremely small. In principle, this may suppress the vortex
generation.

However, as mentioned above, the existence of the vortex
state in high-Tc superconductors is well established. In the
above context two explanations are possible:~1! the concept
of d pairing is not valid for these systems; or,~2! some
kinetic mechanism exists which stably produces the vortices.
We concentrate on this problem in the present paper.

MODEL AND RESULTS

The Ginzburg-Landau-Wilson~GLW! functional for d
pairing may be written in the form1,6–9

H51/2E dV$ahh*1b1~hh* !2/21b2uh•hu2/2

1b3@ uhxu41uhyu4#/21K1Di*h j*Dih j1K2Di*h i*Djh j

1K3Di*h j*Djh i1K4Dz*h i*Dzh i1g~rotA!2%, ~1!

where Di5] i2 igAi , j5x,y; A is a vector potential;
h5$hx ,hy%,hx5h11 ih2 ,hy5h31 ih4; a5a(T2Tc);
b1 ,b2 ,b3 and Ki are phenomenological constants;
g51/8p, and g52e/\c. Magnetic stability and the posi-
tiveness of the quartic form in the functional~1! lead to the
following restrictions:

K1.uK2u, K11K21K3.uK2u, K4.0,
~2!

b11b21b3/21min@b3/2;2~b21ub2u!/2#>0.

Let us consider the specific situations existing in UPt3
and Y-Ba-Cu-O systems, where the coefficientb3 is anoma-
lously small andb1'b2; b2.0.10,11Under these conditions
and in the absence of an external magnetic field, an ordered
state with broken time-inversion invariance occurs. Below,
for simplicity, we suppose thatb350. This simplifies all
equations, but changes the free-energy functional from
square to cylindrical symmetry. It may be proven that a small
correction fromb3Þ0 ~but at b3!b1 ,b2) leads to some
renormalization of the parameters, but does not strongly
change the general physical picture. Whenb350 the condi-
tion ~2! is transformed to a simpler one:b1.0, b1.2b2 .

In the presence of fluctuation noisef (r ,t), the evolution
of the order parameter may be described on the basis of the
well-known modification of the Landau-Khalatnikov equa-
tions in the form

]h i /]t52GdH/dh i1 f ~r ,t !,
~3!

]A/]t52GAdH/dA1 f ~r ,t !,

whereG andGA are kinetic constants and

^ f ~r ,t !&50, ^ f ~r ,t ! f ~r ,t !&5Dd~r2r 8!d~ t2t8!.

Taking into account the anisotropy and hierarchy of inter-
actions in the substances under consideration~and for sim-
plicity!, we suppose in what follows that no variables depend
on thez coordinate. This means that we study numerically a
two-dimensional cross section of a real 3D system in the
plane perpendicular to thec axis.4,5 In addition, for the same
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reasons we limit ourselves to the caseK2 ,K3!K1 . As a
result we have the system of equations

]h j /]t5Dh j2~21! j~2A¹hk1hk¹A!2h j@A
2211S#

1bM]M /]h j1 f , @ j51, . . . ,4,k5 j2~21! j #,
~4!

qA
21]A/]t52rot~rotA!1$@h1¹h22h2¹h1#

1@h3¹h42h4¹h3#2AS%/¸21 f .

The standard notatioņ is used for the Ginzburg-Landau
parameter in these dimensionless equations. For typical su-
perconductors withd pairing one haş @1. The following
notation is used here:

S5( h i
2[hh* , M5@h1h42h2h3#[ i @h3h* #/2.

h i5h i@~b11b2!/a#1/2, qA5~G21GA/8paj2!;1,

b52b2 /~b11b2!,2, j5~K1 /a!1/2.

Equations~4! were solved by the numerical approach al-
ready used in Refs. 5 and 12. Figures 1 and 2, respectively,
show a typical fragment of the (x,y)-space distributions of
the order-parameter modulusS5(h i

2 and magnetic field
h5rotA, at an intermediate stage of evolution. To calculate
them, initial conditions with zero order parameter and
boundary conditions corresponding to zero external magnetic
field were used.

Two types of the peculiarities presenting in the system are
quite visible on the pictures. They are the ‘‘usual vortices’’
and specific ‘‘channels’’ on theh(x,y) surface, with a width
D5@j2(b11b2)/b2#

1/2 and having magnetic field inside
them. Generation of the ‘‘channels’’ is an interesting feature
of the system under consideration. At intermediate steps of
the evolution these ‘‘channels’’ form very complicated con-
figurations. During the relaxation of the system to the or-
dered state these ‘‘channels’’ take the simpler form of rings.

After that, there are two different possibilities:~1! the ring
‘‘channel’’ completely disappears att→`; ~2! it transforms
to the ‘‘usual’’ vortex.

Figure 3 reproduces the typical stages of this transforma-
tion corresponding to the second case. In that case the initial
ring has a ‘‘topological charge’’ corresponding to the vortex
from the beginning. The ‘‘usual’’ vortices displayed in Figs.
1 and 2 are the results of this process. The only ‘‘channels’’
which are pinned on the boundary~for example, on the
boundaries of granules! do not disappear.

Numerical observation of excitations stimulates the search
for an approximate analytical solution for them. It is easy to
see that at least in the regions with small curvature, a good
approximation for the ‘‘channels’’ may be obtained even
from the one-dimensional version of the equations.

When the parameteŗ@1 one can prove that the gauge
field A does not strongly effect theh j distributions. So, to
calculate them in lowest approximation it is quite sufficient
to study the following reduced system:

d2S/dx222F(
j

~dh j /dx!2G22S~S21!14bM250,

~5a!

d2M /dx222@~dh1 /dx!~dh4 /dx!2~dh2 /dx!~dh3 /dx!#

22M ~S21!1bSM50. ~5b!

After that one can determine the fieldh, if it is necessary.
However, even in the last form this system is very compli-
cated. We utilized the method of verified smallness used re-
cently in Ref. 5. The concept may be reproduced as follows.

First of all, we solve the equations numerically and find
which terms ~or their combinations! in the equations are
small in comparison with other terms. Of course, this small-

FIG. 1. Fragment of the system at an intermediate stage of evo-
lution containing typical configurations of the order-parameter
modulusS(x,y) @calculated atb52b2 /(b11b2)51#.

FIG. 2. The same as Fig. 1 for magnetic fieldh. Mutual corre-
spondence between the distribution of the magnetic field and the
structure ofS(x,y) is quite visible directly. The ‘‘usual vortices’’
presented here are the results of the collapse of the ‘‘channels’’ at
an earlier stage.
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ness should occur in quite a wide interval of the parameters.
In particular, we found that the terms in square brackets in
Eqs. ~5! may be omitted. As a result, we obtain a system
having two invariants,S andM , only.

Using different projections of the phase pattern of the
system in the space (S,M ,dS/dx,dM/dx), one may estab-
lish an approximate relation between these two variables in
the region of the ‘‘channel.’’ As a result, a unique equation
remains which may be solved directly.

This procedure has been performed and the approximate
relationS(M ).11b(22b)M 2 has been found. In reality, it
is satisfied with a quite good accuracy~up to 1%!. Substitut-
ing this relation into the system~5! one has a simple equation
for M :

d2M /dx21bM2b~22b!2M350.

For the boundary conditions x→2`, M→2M0
[21/(22b) and x→1`, M→1M0 it has a well-known
solution:

M ~x!5@h1h42h2h3#5Qtanh~x/D!. ~6!

Here,D5(2/b)1/25@j2(b11b2)/b2#
1/2 is the width of the

wall, andQ5(M1`2M2`)/2 is the ‘‘topological charge.’’
ForS(x) one has an analytical approximation in the form of
the ‘‘dark soliton’’:

S~x!5(
i51

4

h i
2511b@ tanh~x/D!#2/~22b!. ~7!

It has been found that~at 0,b,1.85) the difference be-
tween these estimations and the numerical results is smaller
than the level of the noise.
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