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Abstract

In this Letter we show that recent observations using dynamic force spectroscopy can be described by a generalized

Tomlinson model which includes the contribution of an external noise. We show that the measured friction forces

depend on the microscopic potential and dissipation inherent to the system as well as on the mechanical properties of

the setup (i.e. spring constant) and the external noise. Tuning the noise and spring constant offers ways to extract

information about the microscopic properties. � 2002 Published by Elsevier Science B.V.

Experiments that probe mechanical forces on
small scales provide a versatile tool for studying
molecular adhesion and friction through the re-
sponse to mechanical stress of single molecules or
of nanoscale tips. The probing techniques include
atomic force microscopy (AFM) [1,2], biomem-
brane force probe microscopy [3] and optical
tweezers [4]. Examples for processes which are
investigated are friction on atomic scale [1,2],
specific binding of ligand–receptor [5], protein
unfolding [6], and mechanical properties of single
polymer molecules such as DNA [7]. In these ex-
periments one probes forces along a reaction co-
ordinate. Recent theoretical studies [8–10] suggest
that microscopic information on the potential and
dissipative interactions, which a molecule or a tip
experiences, can be obtained from dynamic force

spectroscopy (DFS) by investigating the velocity
dependence of the mechanical forces.

Here we introduce a generalization of the
Tomlinson model [11] to describe the dynamical
response of a tip subject to a lateral drive in the
context of DFS. The one-dimensional Tomlinson
model has proven powerful in describing the re-
sponse of a tip in AFM configurations and in re-
producing many of the experimental observations
[12,13]. Our generalization of the Tomlinson
model is by including thermal fluctuations. Intro-
ducing thermal fluctuations leads to a Langevin
equation of motion which describes the AFM re-
sponse, namely the lateral motion of a driven tip,

M€xxðtÞ ¼ �g _xxðtÞ � oUðxÞ
ox

� Kðx� VtÞ þ CðtÞ: ð1Þ

Here the driven tip is of mass M whose lateral
coordinate x is pulled by a spring of a spring
constant K. UðxÞ ¼ U0 cosð2px=bÞ is the peri-
odic potential experienced by the tip due to the
interactions with the substrate. This choice of a
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periodic potential allows for a quantitative analy-
sis of the dynamics by reducing the number of
parameters. Generalizations to non-periodic po-
tential are possible. The parameter g is responsible
for the dissipation which arises from interaction
with phonons and/or other excitations. The spring
is connected to a stage which is driven with a
constant velocity V. In contrast to the previous
studies of the Tomlinson model, Eq. (1) includes
also the effect of noise given by a random force
CðtÞ, which is d-correlated hCðtÞCð0Þi ¼ D2dðtÞ.
For thermal fluctuations D2 ¼ 2kBTg.

It is convenient to introduce the dimensionless
space and time coordinates, y ¼ 2px=b and s ¼ tx,
where x ¼ ð2p=bÞðU0=MÞ1=2 is the frequency of the
small oscillations of the tip in the minima of
the periodic potential. The dynamical behavior of
the system is determined by the following dimen-
sionless parameters: a ¼ ðX=xÞ2 is the square of
the ratio of the frequency of the free oscillations of
the tip X ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
to x. ĝg ¼ g=ðMxÞ, r2 ¼ D2=

ðU0gÞ, and ~VV ¼ 2pV =ðxbÞ are, respectively, the
dimensionless dissipation constant, intensity of the
noise, and stage velocity. Eq. (1) describes also the
response of macromolecules subject to an external
drive provided for instance by optical tweezers.

The observable in DFS is the spring (or fric-
tional) force, in particular its time series and de-
pendencies on external parameters such as driving
velocity, spring constant, temperature and normal
load. The main result reported in DFS is F ðV Þ, the
velocity-dependent force, either maximal or time-
averaged. In order to understand the nature of the
force and to establish relationships between the
measured forces and the microscopic parameters
of the system we apply two approaches: (a) direct
integration of the Langevin equation (1), and (b)
reconstruction of the force from the density of
states, which is accumulated from the corre-
sponding Fokker–Planck equation [14]. In the
Fokker–Planck approach the average friction
force can be written as

F ¼
Z Z

x;v

qðx; v; V ; rÞðsinð2px=bÞ þ gvÞdxdv; ð2Þ

where v is a tip velocity in response to V and
qðx; v; V ; rÞ is a time-averaged density of states for

the driven tip in phase space fx; vg. This equation
explicitly demonstrates two contributions to the
friction force: the potential given by the sinð2px=bÞ
term and the viscous one given by the gv term.

Fig. 1 shows the velocity dependence of the
time-averaged forces found through direct nu-
merical solution of Eq. (1) and by using Eq. (2),
namely the Fokker–Planck approach. The time-
averaged forces in our periodic potential provide
the same information as that of an ensemble of tips
pulled over a barrier.

All calculations have been done under the
condition a < ĝg2=4 < 1, when the system is un-
derdamped with respect to the periodic potential
and overdamped with respect to the driven spring.
Under these conditions we find that for low driv-
ing velocities the system exhibits well-defined stick-
slip motion with a positive minimal spring force,
that is usually observed in AFM measurements
[1,2].

The Langevin and Fokker–Planck approaches
should be equivalent when exact calculations are
possible, however as approximations they can
provide complimentary information on the dy-
namics of the system. Here we concentrate on
averaged forces, however more information can be
obtained from detailed analysis of the time series
which characterizes the response of the system
[15,16].

At low temperatures the velocity dependence of
the averaged force clearly exhibits the existence of
two different regimes of motion: at low driving
velocities F ðV Þ depends only slightly on V, while
for higher velocities F ðV Þ approaches gV . The first
regime corresponds to stick-slip motion in the
time series and the second one to sliding. In-
creasing the temperature leads to an irregular
motion of the tip and smears out the difference
between these regimes. It should be noted that for
relatively strong spring constants K, when a is of
the order of g2, spikes are observed in the aver-
aged force for a weak noise, see Fig. 1a. These
spikes correspond to parametric resonances which
arise under oscillating driving forces [17]. They are
smoothed out for weaker springs and/or stronger
fluctuations.

The thermal fluctuations contribute to the re-
sponse of the tip in two opposite directions:
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(a) they help in getting out of locked states at the
minima of the total potential

UðX ; tÞ ¼ U0 cos0
2p
b
x

� �
þ K

2
ðx� VtÞ2;

and (b) they can make a sliding tip return back to a
locked state. Therefore the fluctuation-assisted
motion is expected to cause a decrease in the mean
frictional force at low velocities, when the activa-
tion over the potential dominates. At high veloci-
ties the second effect becomes relevant and causes
the observed enhancement of the friction in the
sliding regime. These behaviors have been actually
found in our simulations (see Fig. 1a).

Both effects of the fluctuations are clearly re-
flected in the projections of the time-averaged
density of states qðx; v; V ; rÞ on x and v, which are
shown in Fig. 2. The density q has been accumu-
lated over long periods of time, and in order to
improve the averaging process we considered an
ensemble of tips. In the stick-slip regime (low
driving velocities V) qðx; v; V ; rÞ exhibits two
maxima as a function of v, a sharp one at v ¼ 0,
and a less pronounced one at v 6¼ 0 (see Fig. 2a).
These maxima reflect the existence of two well-
defined states, locked and sliding states. Increasing
the intensity r2 of the noise leads to a decrease in
the density of locked states at the cost of an in-
crease of the sliding states. This is reflected in the
temperature dependence of the friction force de-

scribed above. In the sliding regime (high driving
velocities) the density of states is localized around
v ¼ V , and the contribution of the locked state is
small. Fig. 2b shows that the density as a function
of the coordinate for the locked states is concen-
trated near the minimum of the potential, while for
the sliding state it is approximately uniform along
the space coordinate. Using Eq. (2) and the phase
space properties of the density of states we con-
clude that locked states contribute mostly to the
potential component of the friction force that

Fig. 2. Projections of the time-averaged density of states on the

velocity (a) and coordinate (b) of the tip for the driving veloc-

ities ~VV ¼ 0:15 (thin lines) and ~VV ¼ 0:7 (bold lines) and noise

amplitudes r ¼ 0:03 (solid lines) and r ¼ 0:2 (dashed lines).

Parameter values as in Fig. 1.

Fig. 1. An average frictional force as a function of driving velocity (a), and of the logarithm of the driving velocity (b) in dimensionless

units. Solid lines and circles show the forces found by using Eqs. (1) and (2), respectively. The arrow indicates growing intensity of

noise. Parameter values: r ¼ 0, 0.05, 0.08, 0.1, 0.2; a ¼ 7� 10�3, ~gg ¼ 0:2.
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dominates at low driving velocities, and sliding
states contribute to viscous friction dominating at
high driving velocities.

The force F ðV Þ measured in DFS is usually
plotted versus ln V based on the theoretical as-
sumption supported by experiments [2,9,10,18]
that F / kBT ln V . In Fig. 1b we test this as-
sumption of the logarithmic dependence of the
averaged force on V. Our results clearly show that
the logarithmic variation of F ðV Þ is certainly not
universal. This behavior is valid here only over a
limited range of the intensities r2. For weak and
strong fluctuations the behavior of F ðV Þ deviates
from the logarithmic one. For weak spring con-
stants, a=ĝg2 
 1, the logarithmic behavior be-
comes more pronounced and holds over a wider
range of parameters r and V. The dependence of
the averaged frictional forces on the driving ve-
locity and noise intensity, as shown in Fig. 1,
agrees with what is found experimentally: loga-
rithmic dependence on the external velocity and
the dependence on the potential [2]. The maximal
friction force calculated for various values of r2

basically behaves the same way.
We suggest below a simple analytical model,

which describes the influence of the fluctuations on
the density of locked states. The locked states, as
mentioned, determine the friction in the region of
low driving velocities. In the absence of noise the
driven tip leaves a locked state (a minimum of the
total potential Uðx; tÞ) only when the potential
barrier vanishes, i.e. at the instability point where
d2U=dx2 ¼ 0. At this point the spring force reaches
the maximum value of 2pU0=b. In the presence of
noise the transition to sliding occurs earlier, and
the probability P0ðtÞ to find the tip in the locked
state is given by the following kinetic equation:

dP0ðtÞ
dt

¼ �x0P0ðtÞ exp½�EðtÞ=kBT �; ð3Þ

where EðtÞ is the energy distance between neigh-
boring minimum and maximum of the potential
Uðx; tÞ and x0 is the characteristic frequency of the
order of ð2p=bÞðU0=MÞ1=2. In a locked state
the time dependence of the tip position is given by
the equilibrium condition dUðx; tÞ=dx ¼ 0. Calcu-
lating P0ðxÞ and using Eq. (2) lead to the averaged
friction force. We will however focus on the

maximal spring force, measured in DFS, which is
also simpler to calculate.

The value of the activation energy EðtÞ changes
between 2U0, at zero driving force, and 0 at the
instability point. For a weak spring, a2 
 1, near
the instability point, EðtÞ can be written in the
form ðV > 0Þ

EðtÞ ¼ ð2pU0=b� KVtÞ3=2=½ðU0Þ1=2ðp=bÞ3=2�: ð4Þ
Solving Eq. (3) with EðtÞ given by Eq. (4) we ob-
tain

P0ðtÞ � exp
x0

3KV
ðkBT Þ2=3

2p
b

� �3

U0

 !1=3
8<
:

�

2
4� c

2

3
;
2
ffiffiffi
2

p
U0

kBT

 !

þ c
2

3
;
1

kBT
2p
b

� �3

U0

 !�1=2
0
@

1
A

� 2p
b
U0

�
� KVt

�3=2
3
5
9=
;; ð5Þ

where cða; tÞ is the incomplete gamma-function
[19]. Using Eq. (5) the maximal spring force can be
written as

Fmax ¼ �max
oUðxðtÞÞ

ox
P0ðtÞ

� �
t

¼ 2pU0=b�
1

2
ðkBT Þ2=3½U0ð2p=bÞ3�1=3

� ln V
Kb

2pU0x0

� �� �2=3
: ð6Þ

The dependence of F on V given by Eq. (6) is close
to a logarithmic dependence for driving velocities
~VV > a. For ~VV < a velocity dependence is F ðV Þ �
ðln V Þ2=3. This result differs from the previous
phenomenological estimations of the maximal
spring force that predicted only a logarithmic
variation of F ðV Þ. It should be noted that Eq. (6)
includes explicitly the dependence of the force on
the parameters of the microscopic underlying po-
tential and the macroscopic spring constant K.
This equation can be used also for the other types
of underlying potentials, for instance for elastic
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contacts, where logarithmic-type behaviors were
also observed [20].

Additional information on the effect of fluctu-
ations on the dynamics of friction can be obtained
from the analysis of other observables. Studying a
random process it is natural to consider the time
evolution of the variance of the displacement, DL,
of the driven tip. In order to calculate these
quantities we consider an ensemble of tips initially
placed at the same point on the substrate. Fig. 3
displays the time evolution of the size of the spatial
‘spot’, S, which is the span of the ensemble of
driven tips. At short times DL and S have maxima
when most of the tips slide, and minima when they
are locked. These limiting values come together as
the time increases showing that at any given mo-
ment the two types of motion mix. Typical stages
of the time evolution of the spot are presented in
Fig. 4 showing the density distribution in the phase
space.

The time evolution of S demonstrates that after
a few stick-slip periods the spot reaches its maxi-
mal size that equals to a length of sliding of the
individual tip. The variance of the displacement
shows however a long time redistribution of the
density inside the spot. The bottom envelop of
DLðtÞ follows the time dependence of the mean
square displacement for the Ornstein–Uhlenbeck

process that describes diffusion in a harmonic
potential, supplied here by the spring, DLðtÞ ¼
½kBT ð1� expð�2Kt=geffÞÞ=K�

1=2
[14]. This results

from the fact that during sliding the tips diffuse in
the combined potential Uðx; tÞ which for a weak
spring is harmonic with slight modulations due to
the periodic potential of the substrate.

It should be noted that in order to fit the Orn-
stein–Uhlenbeck equation to the results of our
calculations, the damping coefficient geff entered
the equation should be considered as a fitting pa-
rameter that is inversely proportional to the in-
tensity of the noise. This reflects the influence of
the substrate potential that traps tips leading to an
increase of the effective friction geff . This effect is
most important at low intensities of the noise.
Thus, envelopes of DLðtÞ and SðtÞ become steeper
as r increases, and they approach asymptotic
values at shorter times (see Fig. 3).

In conclusion, DFS results depend not only on
the underlying potential and dissipative interaction
but also on the intensity of external noise and on
the driven spring constant. Tuning these parame-
ters allows to separate the potential and dissipative
contributions to the force and to extract desirable
information on the microscopic properties of the

Fig. 3. Time evolution of the size S of the spatial ‘spot’ created

by the ensemble of driven tips and of the variance of the dis-

placement, DL. Solid and dashed lines show the envelops cal-

culated according to the Ornstein–Uhlenbeck equation for the

noise intensities r ¼ 0:03 and r ¼ 0:3. Parameter values:

a ¼ 3:2� 10�3, ~gg ¼ 0:2, ~VV ¼ 0:45.

Fig. 4. Time evolution of the density of states distribution in

the phase space. Typical stages of the time evolution of the

portrait are presented: (a) the first jump of the tip from the

locked state, (b) the locked state at short times, (c) intermediate

stage of the time evolution, (d) stationary shape of the phase

portrait showing mixing of locked and sliding states. All por-

traits are shown within the same interval of the space coordi-

nates. Parameter values as in Fig. 3.
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system. The amplitude of our periodic potential
can be deduced from Fmax. Increasing the intensity
of the noise makes the dissipative component of
friction gV dominate already at low driving ve-
locities and enable to obtain g experimentally.
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