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Abstract

A new simulation technique for modeling elastoplastic deformation and friction processes based on the dynamics of a system of

‘‘lattice particles’’ is proposed. In usual simulation methods like molecular dynamics, only interactions compatible to the symmetries of

space (invariant with respect to translations and rotations) are used. In the proposed method, the interaction potentials depend both on

the relative position of particles and the orientation of their relative radius vector with respect to prescribed ‘‘lattice directions’’. We show

that in spite of this relation with the ‘‘external space’’, the system behaves, in linear approximation, as an isotropic elastic medium

invariant to both the translations and rotations of the medium as a whole. The coupling with the external space occurs to be a surface

effect, which either does not play an important role (if the motions of the boundaries are prescribed) or can be handled properly by

introducing fictive compensating surface forces. Introduction of forces depending on the orientation of the local surroundings of a

particle makes it possible to describe elastic media with arbitrary elastic properties by using only interactions between the next

neighbours. The system of lattice particles shows better stability properties and allows one to describe large plastic deformations,

avoiding problems of ‘‘packaging’’ typical for many particle methods.

r 2006 Elsevier Ltd. All rights reserved.
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UNCORRECT1. Introduction

Numerical methods based on continuum models (finite
elements) are very efficient in simulating various mechan-
ical systems. However, a number of physical processes can
be simulated within the framework of continuum ap-
proaches to only a very limited extent. These are primarily
the processes whereby the medium continuity is impaired,
i.e., those of nucleation and accumulation of damages and
cracks, and failure of materials. One of the reasons for
widespread continuum methods is that differential equa-
tions of continuum mechanics allowed using effective
analytical methods developed during the last two centuries.
The recent advancement in computer engineering has made
this advantage of continuum models less significant.
Having no negation of the importance of analytical
methods, we should nevertheless state that an ever-
increasing number of problems in mechanics are solved
by ‘‘direct’’ computations. To this end, the successfully
77
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continuized nature should be again discretized (e.g., in the
finite element method). The reasons mentioned allow us to
predict that in the immediate future, there will be a fast
development of simulation methods based directly on the
discrete representation of materials with no continuization
of the latter as an intermediate step. We refer to these
‘‘directly discrete’’ methods as particle methods.
One of the first attempts of such a kind was made by

Greenspan, who has used the Lennard–Jones interaction
potentials in macroscopic many-particles systems [1]. A
further step in developing the particle methods was the
introduction of internal variables and of the ‘‘interaction’’
between the mechanical and the thermodynamic degrees of
freedom in Refs. [2,3]. On this way, the thermal con-
ductivity has been introduced in the discrete systems as well
as dependence of interaction potentials on the stored
thermal energy. As an example of a successful development
of particle method for quantitative description of real
media, we mention the method of movable cellular
automata [4,5].
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How could the macro and meso approaches in the
method of particles be attempted? The first examples of its
applications have already shown that the particles method
has some specific difficulties. One of the most known is that
the properties of the particles system do strongly depend on
their ‘‘packaging’’. Further, by using only the two-particle
potential, it is not possible to fit two elastic constants of an
isotropic elastic continua [6]. One of the solutions of this
problem is to use many-particle potentials either in the
form proposed in Ref. [7] or as it is made in the method of
movable cellular automata [6].

In the present paper, we propose a third way to describe
arbitrary elastic or plastic continua with particle methods.
We use a system of particles, ordered initially into a
hexagonal lattice, which do not ‘‘forget’’ this initial order.
For this purpose, we use interactions explicitly depending
on the underlying hexagonal symmetry of the model. We
show, however, that in spite of the underlying hexagonal
symmetry, the system behaves as an isotropic elastic
continuum with continuous rotation symmetry (in the
linear range). The situation is very similar to that with
lattice gases. Frisch et al. [8] have shown in 1986 that it is
possible to describe hydrodynamics of an isotropic liquid
with a ‘‘lattice gas’’. They gave an example of a system of
binary elements on a hexagonal lattice with simple discrete
rules for a transition between states, which provides an
equation of isotropic incompressible viscous fluid in the
macroscopic limit. In the present paper, we show that a
similar approach is possible for describing elastic and
plastic properties of solids.
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2. Linear elastic model

Consider a hexagonal lattice of mass points. We would
like to define the interactions between them in such a way,
that the system behaves macroscopically as an isotropic
elastic body. Let us define the lattice vectors as unit vectors
between the next neighbours in the not-deformed lattice:

eai ¼ cos
p
3
a; sin

p
3
a

� �
; a ¼ 0; 1; 2; 3; 4; 5. (1)

The index i stands for the Cartesian components x or y,
and a counts the next numbers (6 in a hexagonal lattice).
The length of a vector connecting two neighbouring centres
is denoted as c. If the mass points are moved from their
initial position in the lattice by ua

i , an interaction force
appears. The most general form of the linear interaction
between two neighbours in the direction of eai is

F0a
i ¼ k1ðu

a
i � u0

i Þ þ k2eaj ðu
a
j � u0

j Þe
a
i . (2)

F0a
i is the force acting on the centre zero from the centre a.
Let us now suppose some smooth deformation field u(x)

in the body. The force acting on the centre zero is then
equal to
ED P
ROOF

F0
i ¼

X5
a¼0

F0a
i ¼

X5
a¼0

k1ðu
a
i � u0

i Þ þ k2eaj ðu
a
j � u0

j Þe
a
i

¼
X5
a¼0

ðk1ðuiðc~e
a
Þ � uið0ÞÞ

þ k2e
a
j ðujðc~e

a
Þ � ujð0ÞÞe

a
i . ð3Þ

Expanding the field ui up to the terms of second order, we
get

uiðc~e
a
Þ � uið0Þ ¼ c

qui

qxj

eaj þ
c2

2

q2ui

qxjqxk

eaj eak. (4)

Substitution into Eq. (3) gives

F0
i ¼

X5
a¼0

k1
c2

2

q2ui

qxjqxk

eaj eak þ k2
c2

2

q2uj

qxmqxk

eameakeai eaj

 !
.

(5)

It is easy to show that

X5
a¼0

eaj eak ¼ 3djk,

X5
a¼0

eameakeai eaj ¼
3

4
ðdmkdij þ dmidkj þ dmjdkiÞ. ð6Þ

The force (5) can thus be represented in the form

Fi ¼
3

2
k1c

2 q2ui

qx2
k

þ
3

8
k2c

2 q2ui

qx2
k

þ 2
q2uk

qxiqxk

� �

¼
3

2
c2 k1 þ

1

4
k2

� �
q2ui

qx2
k

þ
3

4
c2k2

q2uk

qxiqxk

ð7Þ

or in the vector form

F ¼
3

2
c2 k1 þ

1

4
k2

� �
Duþ

3

4
c2k2rdiv u. (8)

Note that it is invariant with respect to both translations
and rotations of the body as a whole.
The equation of motion of the centre thus has the form

m€u ¼
3

2
c2 k1 þ

1

4
k2

� �
Duþ

3

4
c2k2rdiv u.

Dividing this equation by the area
ffiffiffi
3
p

c2 per particle in a
hexagonal lattice and introducing the two-dimensional
density r ¼ m=

ffiffiffi
3
p

c2, we get

r€u ¼

ffiffiffi
3
p

2
k1 þ

1

4
k2

� �
Duþ

ffiffiffi
3
p

4
k2rdiv u. (9)

Comparison of this equation with the macroscopic
equation of motion of an isotropic linear elastic continuum

r€u ¼ mDuþ ðlþ mÞrdiv u, (10)

gives for Lame coefficients of the medium

m ¼

ffiffiffi
3
p

2
k1 þ

1

4
k2

� �
; lþ m ¼

ffiffiffi
3
p

4
k2. (11)

Thus, any isotropic elastic continuum, in the linear
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approximation, can be described with the above lattice
model.
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3. Two-particle interaction potential

Interaction (2) depends only on the relative displacement
of two selected neighbours and can thus be characterized as
a ‘‘two-particle interaction’’. To be able to describe large
deformations, plasticity or rapture, as well as other effects
where the particles leave their initial positions and may
change the neighbours, one has to define a non-linear
interaction, which depends not only on the initial but on
the current neighbourhood. The simplest possible idea
would be to define a two-particle interaction potential
depending on a distance between particles only. However,
it is impossible to define such a two-particle potential
which has the linear expansion (2) and is compatible with
the space symmetries. Indeed, a potential depending on the
distance leads to central forces, which always have only
projection onto the radius vector connecting the two
particles. It can have only the second term in the expansion
(2). The idea which we explore in this paper is the
following: we define the interactions in such a way that
they do depend explicitly on both the relative position of
two particles and the orientation of the relative radius
vectors with respect to the external lattice directions. At
first glance, this coupling with the ‘‘external space’’ makes
the system not invariant to the rotations of the medium as
a whole. In reality, we have already shown that in linear
approximation, the medium behaves as a normal isotropic
continuum that is invariant with respect to the rotations.
The whole non-symmetry is a surface effect. This is similar
to the situation with the lattice gas [8], which simulates
microscopically the isotropic fluid in spite of the underlying
hexagonal symmetry of the lattice. The rotational symme-
try in the linear range makes us sure that the particle
system coupled with the hexagonal lattice directions can be
used for realistic simulation of elastic and non-elastic
behaviour of solids. In Section 4, we formulate a possible
realization of such a ‘‘movable lattice particles’’ (MLP)
model. The rest of the paper is devoted to investigation of
its properties and simulation capabilities.
O
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Fig. 1. Illustrations to the procedure which defines the additional forces

for the hexagonal six-fold (a) and tetragonal four-fold (b) symmetries.

Grey colour marks the sectors in which these forces tend to return the

particles to particular symmetry axes (p/6 or p/4, respectively).
UNC4. Model of MLPs

Effective dynamic equations of the model include a
system of Langevin equations (which are Newtonian
equations with the random noise source and dissipation
term) completed by the ‘‘fictive forces’’ which return the
vectors connecting interacting material points to (preli-
minary prescribed) symmetry axes.

In general case theses equations for 2D-system can be
written as follows:

qvz=qt ¼ �qU=qzþ Fz
return � Fz

diss þDz,

qvx=qt ¼ �qU=qxþ F x
return � F x

diss þDz. ð12Þ
D P
ROOF

Here, the following notations are introduced: @x=@t ¼ vx,
@z=@t ¼ vz.

U ¼ Uðrj � rkÞ (13)

is an arbitrary two-point potential which depends on the
distance between the particles

r ¼ ððxj � xkÞ
2
þ ðzj � zkÞ

2
Þ
1=2 (14)

only and has an equilibrium minimum in a point r ¼ r0.
The dissipative force is proportional to the velocity:

Fx;z
diss / Zvz;x. (15)

Random noise source as usually has the following
correlators:

hzðx; z; tÞi ¼ 0,

hzðx; z; tÞzðx0; z0; tÞi ¼ Ddðx� x0Þdðz� z0Þdðt� t0Þ. ð16Þ

Here, d is the Dirac impulse function and intensity D is
determined by the temperature of the system according to
the fluctuation–dissipative theorem

D ¼ 2kBTZ. (17)

New terms are the ‘‘return functions’’, F x;z
return, which turn

the vectors connecting each material point of the system
with (nearest) neighbours, placed inside some proximity
radius r0, into a nearest symmetry axis. To define them we
use a procedure which is illustrated in Fig. 1.
For each pair of the vectors rj and rk, a phase of the

complex number

jjk ¼ ððxj � xkÞ þ iðzj � zkÞÞ

is calculated. After this, the projections are determined to
fulfil the necessary rotation (which corresponds to a given
rotation in the sector {�p/6, p/6} for the hexagonal six-fold
symmetry or in the sector {�p/4, p/4} for the tetragonal
four-fold symmetry). One has

Fx
return ¼ �f 0 sinðjÞ sinðnjÞ,

Fz
return ¼ f 0 cosðjÞ sinðnjÞ, ð18Þ

where n ¼ 4 or n ¼ 6, respectively.
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The amplitude of the new force f0 is a new free parameter
which allows one to tune a value of the elastic modulus and
the Poisson ratio of the system under consideration. At
f 0 ¼ 0 the system certainly degenerates into an ‘‘ordinary’’
for the 2D-system hexagonal lattice with a fixed Poisson
ratio n ¼ 1=3.

The same lattice takes place at nontrivial f0 and n ¼ 6. It
differs only by the controlled value of the Poisson ratio. At
fixed other forces of the problem and a high enough value
of the additional force f0, the lattice can be transformed
into a square (tetragonal or, more generally, rhombic) one
at n ¼ 4. In any case the symmetry of the lattice and its
elastic or even plastic properties have to be found a
posteriori, by performing numerical experiments which fix
a balance for different variants of the external loads.
OOF
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Fig. 2. Porous ordered structures generated from random initial condi-

tions tetragonal and hexagonal symmetries accompanied by correspond-

ing Fourier transforms of the two-point correlation functions ((a, b) and

(c, d) subplots, respectively).
UNCORRECT

5. Preliminary study of the MLP model

A crucial feature of the model is its ability to create and
keep under strong non-linear perturbations hexagonal and
tetragonal lattices prescribed by the additional forces
Fx;z

return. To check this, we generate the lattice starting from
random initial conditions. The procedure was organized as
follows.

We put randomly placed particles inside a space region
which is (slightly) bigger then a region corresponding to the
ideal packing of the particles into a hexagonal or square
lattice. At fixed parameters of the potential U ¼ Uðrj � rkÞ,
it has an equilibrium minimum at some r0 distance between
the particles, which determines a density of ideal structure.
At a low enough temperature UbT, the system tends to an
equilibrium which is close to such an ideal lattice with
appropriate symmetry.

It is important to stress that we do not apply here
periodic boundary conditions corresponding to the trans-
lation invariant system. Normally, such conditions force
some periodic arrangement of the particles, which is a
compromise between actual interactions of the system and
artificial periodicity of the boundary conditions. This
approach is natural for many other problems (e.g., in the
physics of phase transitions), but it is not the goal of this
study. Here, a structure, which appears in a course of the
relaxation, is allowed to be extremely imperfect. It can
include plenty of pores inside. But, it still has well-
pronounced local symmetry. Fig. 2 illustrates typical
results of such a procedure applied to four-fold and six-
fold symmetries (upper and down rows of plots, respec-
tively).

To control the results quantitatively, we apply a
standard approach of the solid-state theory. The Fourier
transform of the two-point correlation function is calcu-
lated according to the following procedure [9]:

GðqÞ ¼

Z
d2rGðr� r0Þ, (19)

where
ED P
RGðr� r0Þ ¼ hrlocalðrÞrlocalðr

0Þi (20)

and density of the discrete set of the particles is defined
according to the usual receipt as a sum of the impulse Dirac
functions

rlocalðrÞ ¼
X

k

dðr� rkÞ. (21)

It is expected that for an ideal lattice, the Fourier
transform has all correlation spheres (complete inverse
lattice) of the maximums, but not a central group of the
maximums only. It is seen from Fig. 2 that despite the small
number of the particles N ¼ 256 (specially used for the
illustration) and a strong imperfection of the porous
structure, calculated correlation functions have well-
pronounced symmetries. It means that one can take quite
an arbitrary form of the ‘‘body’’ as an initial condition for
any further numerical experiments.
One more challenge for the approach is to apply it to

study the plastic deformations very far from an equili-
brium. We performed a set of numerical experiments in this
direction. It is found that at different intensities of an
external load (as well as at different time dependences or
geometries of the load), the system reproduces a wide
variety of known dynamic scenarios. The ‘‘body’’ can
oscillate elastically under a small load, or change its shape
irreversibly, possessing plastic deformations, under higher
loads. In the last case, the system goes via a number of
quasi-static (metastable) equilibrium configurations into a
final one and oscillates elastically around a new equili-
brium.
To control the density evolution during the deformation

process, we apply Gaussian convolution:
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Fig. 4. Time evolution of the density distribution for the process presented

in Fig. 3. Probability distribution is shown by the grey-scale map. Dark

colour corresponds to high probability. Mean density for the whole system

is plotted by the bold black line on the same scale. The region of maximum

density coinsides with its maximal standard deviations corresponding to a

stage of fast plastic deformations shown by a pattern and histogram in

Fig. 3(c) and (d), respectively.
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rðrÞ ¼
X

k

expð�ðr� rkÞ
2=lÞ. (22)

It is a widely used operation which allows one to find a
density smoothed over short-time and scale fluctuations
driven by the random noise. Fig. 3(a–f) presents principal
stages of the plastic deformation. The density is shown by
grey-scale map. White spots in the left subplots depict
actual positions of the ‘‘particles’’ used to reconstruct the
density by means of the convolution Eq. (22).

We start from the initial configuration of a rectangular
slab with hexagonal internal symmetry (Fig. 3a). After an
initial period of compressing caused by a strong enough
external pressure (applied equally to the right and left
boundaries of the slab), the system reaches a state of
maximal density (Fig. 3c). A rate of plastic deformation at
this stage reaches its maximum simultaneously. At later
stages of the process, the system slowly goes to a new
equilibrium which is shown in the subplot Fig. 3e. Right-
hand-side subplots (Figs. 3b, d and f) present histograms of
the density calculated for the above stages. It is seen
UNCORRECTE
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Fig. 3. Principal stages of the plastic deformation. White spots in the left

subplots depict actual positions of the ‘‘particles’’ used to reconstruct the

density by means of a Gaussian convolution described in main text. Initial

configuration (a), a state of maximal density and rate of plastic

deformation (c) and late stage of the process when system slowly goes

to a new equilibrium (e) are shown. Right-hand-side subplots (b), (d) and

(f) present histograms of the density calculated for these stages. The

maximal rate of the plastic deformations corresponds to the state with

maximal local densities (c) and maximal density fluctuations clearly seen in

subplot (d).
D P
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directly form the subplot in Fig. 3d that the maximal rate
of the plastic deformations at stage Fig. 3c) coincides with
a period of maximal local densities and maximal density
fluctuations.
A complete scenario of the process is seen in Fig. 4,

which presents a time evolution of the density histograms
by means of the grey-scale map. Dark colour corresponds
to high probability. To compare this map with an evolution
of the total density, we plot over the map a bold black line
which depicts an evolution of the mean density on the same
scale. This line lies below the dark grey regions due to an
impact from the points which belong to a vicinity of the
boundary. These points normally create a lower density
which is seen as a flat light grey plateau down to the mean-
density line.
To complete this preliminary study of the MLP model,

we performed a calculation of the relative deformations
under different external pressures. It is found that there is a
critical pressure which separates elastic and plastic
deformations. It is expected from a standard theory [10]
to have a critical deformation amplitude (caused by a
critical external force) which leads to the irreversible plastic
deformation. So, it was an important test for the model to
show that there is a pressure at which the ‘‘body’’
demonstrates such a transition. It starts with elastic
deformation, goes to a critical elastic deformation and
continues further with the plastic one.
To elucidate this, we calculate a relation between the

maximal instant width of the body and the same value of
trial specimen:

dh ¼ ½maxðyÞ �minðyÞ�=f½maxðyÞ �minðyÞ�jt¼0g. (23)

Fig. 5 presents three typical scenarios of the evolution.
The black line in Fig. 5 corresponds to the elastic
behaviour. Starting from zero deformation, the system
quickly reaches an equilibrium (reversible) deformation
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Fig. 5. Three typical scenarios of evolution of the maximal body width

normalised to the same value of trial specimen. The black line corresponds

to elastic behaviour; light grey curve corresponds to exactly the same

plastic deformation as it is presented above in the Figs. 3 and 4. The circle

marks a region where the separatrix (dark grey) curve follows the elastic

line and joins the plastic curve.

Fig. 6. Strong deformations in the vicinity of friction contact (‘‘liquid

layer’’). The upper subplot shows instant configuration of the system. The

lower subplot presents a correlation between the strong deformations in

the contact vicinity and distribution of the mean return force, h F returnj ji,

averaged over the y-direction.
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and oscillates around it. A light grey curve presents the
behaviour at high load. It corresponds to exactly the same
plastic deformation as presented in the Figs. 3 and 4. The
intermediate ‘‘separatrix’’ behaviour is shown by the dark
grey curve. A thick circle marks the region where the
separatrix follows to the elastic line and joins after to the
plastic curve.

To test an applicability of the model to describe the
friction processes, we studied the geometric configuration
shown in Fig. 6. Two beams are brought in contact by a
couple of pressing forces as in Fig. 3. At the same time,
they are moved periodically by two (sinusoidal in time)
transversal forces shown by grey arrows in the Fig. 6. A
small enough pressure causes elastic distortions of the
bodies, which do not affect their symmetry far from the
contact region. But, friction of the bodies in the vicinity of
the contact region strongly affects their structure. It
produces strong deformations and randomizes structure.
One can call this region as ‘‘liquid layer’’ between two
rubbing bodies.

A natural way to describe quantitatively strong distor-
tions of the structure in the frame of the model is to
calculate a local absolute value of the ‘‘return functions’’,
Fx;z

return, which is mostly sensitive to the rearrangement:

h F returnj ji ¼ h½ðF z
returnÞ

2
þ ðF x

returnÞ
2
�1=2i. (24)

The absolute value is taken here and average is
performed over the y-direction

h. . .i �

Z
dy½. . .�=Ly (25)

to extract regular information about return forces along
the x-axis orthogonal to the contact surface. The lower
subplot in Fig. 6 shows a relation between the mean value
and different regions of the bodies. The correlation is seen
directly. In the closest vicinity of the contact, marked by
the dotted lines, the value h F returnj ji few times overcomes its
value far from the region. There is also an intermediate
region shown by dashed lines. In this region, the system
still keeps its symmetry but the value h F returnj ji is relatively
high due to strong elastic deformation.
To conclude, it is shown that an approach, which

combines a system of Langevin equations (Newtonian
equations with the random noise source and dissipation
term) and additional ‘‘fictive forces’’ returning the vectors
connecting interacting material points to preliminary
prescribed symmetry axes, allows one to describe a wide
variety of realistic elastic and plastic systems.
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